• 제목/요약/키워드: High Efficiency Design

검색결과 3,599건 처리시간 0.031초

고속 터보프롭 항공기용 고효율 경량화 복합재 프로펠러 블레이드 설계 연구 (Design on High Efficiency and Light Composite Propeller Blade of High Speed Turboprop Aircraft)

  • 공창덕;이경선;박현범;최원
    • 한국추진공학회지
    • /
    • 제16권3호
    • /
    • pp.57-68
    • /
    • 2012
  • 본 연구에서는 한국의 차세대 중형항공기에 사용될 고속형 터보프롭 항공기용 고효율 복합재 프로펠러 블레이드의 설계를 수행하였다. 와류 이론과 블레이드 깃 요소 이론을 활용하여 기본 공력설계 및 성능 해석을 수행하였고 공력설계 결과는 상업용 전산유체해석 프로그램인 ANSYS를 이용한 해석을 통해 확인 되었다. 프로펠러 구조 설계 시 카본/에폭시 복합재료가 적용되었으며, 경량화와 구조 안정성 개선을 위하여 스킨-스파-폼 샌드위치 구조 형식를 채택하였다. 제안된 프로펠러 블레이드는 공력 및 구조 해석과 시제품 프로펠러 블레이드의 구조 시험을 통하여 높은 효율과 안전한 구조임이 검토되었다.

영구자석 고속전동기의 출력밀도 및 효율 향상을 위한 설계 기법 (Design Technique of a Permanent Magnet High-speed Motor for Improving Power Density and Efficiency)

  • 이기덕;이주;이형우
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.425-430
    • /
    • 2014
  • This paper presents a design technique to improve the power density and efficiency of a permanent magnet high-speed motor by using the mono-PM rotor. The suggested model minimized rotor diameter and stack length which have a bad influence on shafting in the high-speed operation. Conventional and suggested motors are analyzed and compared by using FEM(Finite Element Method) to verify the effectiveness. The overall performance such as torque, losses, efficiency and power density and so on are investigated in detail. The results of the analysis deduced that the suggested mono-PM rotor design is superior to the conventional one.

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

웜기어 감속기 제작 및 성능평가에 관한 연구 (A Study on the Fabrication and Performance Evaluation of Worm Gear Reducer)

  • 이동규;진진;전민형;김래성;류성기
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2018
  • We aimed to develop a high quality 3.5 ton class swing reducer by studying the efficiency improvement of the reducer through the optimum design and performance evaluation of the assembled, high efficiency, lightweight 3.5 ton swing reducer. Based on the optimal design of the worm and worm wheel, the optimal manufacturing method of the worm wheel, the optimized casing design, and the optimum design of the output pinion, Respectively. Therefore, in this paper, to improve the efficiency of the worm gear reducer system, we will develop the manufacturing technology and verify the mass production by combining the manufacturing process design, processing and assembling technology according to the optimization design. We have conducted research to realize mass production by product verification such as product efficiency, reliability and durability according to optimal design of worm gear reducer.

LCC 공진형 컨버터 기반의 고효율 커패시터 충전기 설계기법 (Design Method of High Efficiency Capacitor Charger Based on LCC Resonant Converter)

  • 정송찬;송승호;최민규;류홍제
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.325-331
    • /
    • 2022
  • This study proposes a design method that minimizes a conduction loss of LCC resonant converter under rated condition. Through a simplified analysis of the waveform of the resonant current, the power transfer section and RMS value of the resonant current was analyzed mathematically and graphically. Based on this analysis, the design method that minimizes the RMS value of the resonant current is proposed. To demonstrate this method, this study designed a 7.5 kW (100 V, 75 A) capacitor charger based on LCC resonant converter and the design parameters were chosen according to the process of the design method. Then, the capacitor charger was implemented. An experiment was conducted to measure efficiency while satisfying design specifications under rated conditions. This design method was verified to be effective by achieving 97.7% maximum efficiency and design specifications under rated conditions.

FanDAS-CFX 결합을 통한 고효율-저소음 축류 송풍기의 개발 (Development of a High-efficiency and Low-noise Axial Flow Fan through Combining FanDAS and CFX codes)

  • 이찬;길현권;조계현
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.37-41
    • /
    • 2012
  • High-efficiency and low-noise axial flow fan is developed by combining the FanDAS, a computerized axial fan design/performance analysis system, and CFD software(CFX). Based on fan design requirements, FanDAS conducts 3-D blade geometry design, quasi-3D flow/ performance analyses and noise evaluation by using through-flow analysis method and noise models for discrete frequency and broadband noise sources. Through the parametric studies of fan design variables using FandDAS, preliminary and baseline design is achieved for high efficiency and low noise fan, and then can be coupled with a CFD technique such as the CFX code for constructing final and optimized fan design. The FanDAS-CFX coupled system and its design procedure are applied to actual fan development practice. The FanDAS provides an optimized 3-D fan blade geometry, and its predictions on the performance and the noise level of designed fan are well agreed with actual test results.

산업용 인버터 구동을 위한 고효율 고내압 Field-stop IGBT 최적화 설계에 관한 연구 (Study on Industrial Inverters for Driving High-efficiency High-voltage Field-stop IGBT Optimization Design)

  • 이명환;김범준;정은식;정헌석;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제26권4호
    • /
    • pp.257-263
    • /
    • 2013
  • In this paper, Solar, Wind, fuel cell used in a Power conversion devices and industrial inverter motor to increase the efficiency of energy consumption, which is a core part of high-efficiency, high-voltage Trench Gate Field Stop IGBT was studied. For this purpose Planar type NPT IGBT and Planar type Field Stop IGBT have designed a basic structure designed to Trench Gate Field Stop IGBT based on the completed structure by analyzing the energy consumption of electrical characteristics, efficiency is a key part, high-efficiency and high-voltage inverter for industry regarding the optimization design for Trench Gate Field Stop IGBT.

Optimization of Bidirectional DC/DC Converter for Electric Vehicles Based On Driving Cycle

  • Yutao, Luo;Feng, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1934-1944
    • /
    • 2017
  • As a key component of high-voltage power conversion system for electric vehicles (EVs), bidirectional DC/DC (Bi-DC/DC) is required to have high efficiency and light weight. Conventional design methods optimize the Bi-DC/DC at the maximum power dissipation point (MPDP). For EVs application, the work condition of the Bi-DC/DC is not strict as the MPDP, where the design method using MPDP may not be optimal during travel of EVs. This paper optimizes the Bi-DC/DC converter targeting efficiency and weight based on the driving cycle. By analyzing the two-phase interleaved Bi-DC/DC for hybrid energy storage systems (HESS) of EVs, its power dissipation is calculated, and an efficiency model is derived. On this basis, weight models of capacitor, inductor and heat sink are built, as well as a dynamic temperature model of heat sink. Based on these models, a method using New European Driving Cycle (NEDC) for optimal design of Bi-DC/DC which simultaneously considered efficiency and weight is proposed. The simulation result shows that compare with conventional optimization methods revealed that the optimization approach based on driving cycle allowed significant weight reduction while meeting the efficiency requirements.

열전모듈 제습기의 에너지 효율과 성능에 미치는 설계 인자의 영향 분석 (The Analysis of the Effects of Design Parameters on the Energy Efficiency and Performance of TEM Dehumidifiers)

  • 이태희
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-7
    • /
    • 2020
  • To provide a design direction for high efficiency thermoelectric module(TEM) dehumidifiers, the effects of design factors of TEM dehumidifiers on dehumidification energy efficiency and performance were numerically investigated. The design factors considered in this study are the TEM capacity, the performance of heat exchangers on the heating and cooling surfaces of the TEM. The higher capacity of the TEM results the higher dehumidification energy efficiency and performance at some operating voltage. The enhanced performance of the heat exchanger on heating surface increased the dehumidification energy efficiency and performance at all the operating voltage. The enhanced performance of the heat exchanger on cooling surface decreased the dehumidification energy efficiency and performance at all operating voltage.

Symmetric Balance Incomplete Block Design Code의 Spectral Efficiency (Spectral Efficiency 0f Symmetric Balance Incomplete Block Design Codes)

  • 지윤규
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.117-123
    • /
    • 2013
  • 본 논문은 symmetric balance incomplete block design(BIBD) code의 BER=$10^{-9}$을 만족하는 spectral efficiency를 구하였다. 이 계산 결과 effective power가 큰 경우 ($P_{sr}=-10$ dBm)는 m=2로 고정시키고 q값을 변화시키는 ideal BIBD code구성이 효율적이었다. 이와 반대로 effective power가 작은 경우 ($P_{sr}=-25$ dBm)는 ideal BIBD code 구성 보다는 q > 2인 값을 취하고 m값을 변화시키는 설계가 더 효율적임을 알 수 있었다.