• Title/Summary/Keyword: Hexamethyldisilane

Search Result 17, Processing Time 0.029 seconds

Selective chemical vapor deposition of $\beta$-SiC on Si substrate using hexamethyldisilane/HCl/$H_{2}$ gas system (Hexamethyldisilane/HCl/$H_{2}$ gas system을 이용한 Si 기판에서 $\beta$-SiC의 선택적 화학기상증착)

  • 양원재;김성진;정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.14-19
    • /
    • 1999
  • Using a single precursor of hexamethyldisilane $(Si_{2}(CH_{3})_{6})$, $\beta$-SiC film was successfully deposited on a Si substrate at $1100^{\circ}C$ by a chemical vapor deposition method. Selectivity of SiC deposition on a Si substrate partially covered with a masking material was investigated by introducing HCl gas into hexamethyldisilane/$H_{2}$ gas system during the deposition. The schedule of the precursor and HCl gas flows was modified so that the selectivity of SiC deposition between a Si substrate and a mask material should be improved. It was confirmed that the selectivity of SiC deposition was improved by introducing HCl gas. Also, the pulse gas flow technique was effective to enhance the selectivity.

  • PDF

Influence of Carbonization Conditions in Hydrogen Poor Ambient Conditions on the Growth of 3C-SiC Thin Films by Chemical Vapor Deposition with a Single-Source Precursor of Hexamethyldisilane

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-180
    • /
    • 2013
  • This paper describes the characteristics of cubic silicon carbide (3C-SiC) films grown on a carbonized Si(100) substrate, using hexamethyldisilane (HMDS, $Si_2(CH_3)_6$) as a safe organosilane single precursor in a nonflammable $H_2$/Ar ($H_2$ in Ar) mixture carrier gas by atmospheric pressure chemical vapor deposition (APCVD) at $1280^{\circ}C$. The growth process was performed under various conditions to determine the optimized growth and carbonization condition. Under the optimized condition, grown film has a single crystalline 3C-SiC with well crystallinity, small voids, low residual stress, low carrier concentration, and low RMS. Therefore, the 3C-SiC film on the carbonized Si (100) substrate is suitable to power device and MEMS fields.

Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si (100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.533-537
    • /
    • 2007
  • This paper describes the heteroepitaxial growth of single-crystalline 3C-SiC (cubic silicon carbide) thin films on Si (100) wafers by atmospheric pressure chemical vapor deposition (APCVD) at 1350 oC for micro/nanoelectromechanical system (M/NEMS) applications, in which hexamethyldisilane (HMDS, Si2(CH3)6) was used as a safe organosilane single-source precursor. The HMDS flow rate was 0.5 sccm and the H2 carrier gas flow rate was 2.5 slm. The HMDS flow rate was important in obtaing a mirror-like crystalline surface. The growth rate of the 3C-SiC film in this work was 4.3 μm/h. A 3C-SiC epitaxial film grown on the Si (100) substrate was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Raman scattering, respectively. These results show that the main chemical components of the grown film were single-crystalline 3C-SiC layers. The 3C-SiC film had a very good crystal quality without twins, defects or dislocations, and a very low residual stress.

Selectivity and Characteristics of $\beta$-SiC Thin Film Deposited on the Masked Substrate (기판-Mask 재료에 따른 $\beta$-SiC 박막 증착의 선택성과 특성 평가)

  • 양원재;김성진;정용선;최덕균;전형탁;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.55-60
    • /
    • 1999
  • ${\beta}$-SiC thin film was deposited on a Si substrate without buffer layer using a single precursor of Hexamethyldisilane (Si2(CH3)6) by chemical vapor deposition method. HCI gas was introduced into hexamethyldisilane /H2 gas mixture, and the feeding schedule of HCI and precursor gases was modified in order to enhance the selectivity of SiC deposition between a Si substrate and a SiO2 mask. The effect of HCI gas on the surface roughness of the SiC film was investigated and typical electrical properties of the SiC film were also investigated by Hall measurement.

  • PDF

Selective Chemical Vapor Deposition of $\beta$-SiC on Si Substrate Using Hexamethyldisilane/HCl/$H_2$ Gas System

  • Yang, Won-Jae;Kim, Seong-Jin;Chung, Yong-Sun;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.91-95
    • /
    • 1998
  • Selectivity of SiC deposition on a Si substrate partially covered with a masking material was investigated by introducing HCl gas into hexamethyldisilane/H2 gas system during the deposition. the schedule of the precursor and HCl gas flows was modified so that the selectivity of SiC deposition between a Si substrate and a mask material should be improved. It was confirmed that the selectivity of SiC deposition was improved by introducing HCl gas. Also, the pulse gas flow technique was effective to enhance the selectivity.

  • PDF

A study on the SiC selective deposition (SiC의 선택적 증착에 관한 연구)

  • 양원재;김성진;정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.233-239
    • /
    • 1998
  • SiC thin films were deposited by chemical vapor deposition method using tetramethylsilane (TMS) and hexamethyldisilane (HMDS). The chamber pressure during the deposition was kept at about 1 torr. Precursor was transported to the reaction chamber by $H_2$gas and SiC deposition was carried out at the reaction temperature of $1200^{\circ}C$. Si-wafer masked with tantalum and MgO single crystal covered with platinum and molybdenum were used as substrates. The selectivity of SiC deposition was observed by comparing the microstructure between metal (Ta, Pt, and Mo) surfaces and substrate surfaces (Si and MgO). The deposited films were identified as the $\beta-SiC$ phase by X-ray diffraction pattern. Also, the deposition -behavior of SiC on each surface was investigated by the scanning electron microscope analysis.

  • PDF

Preparation of Pervaporation Composite Membranes for Butanol Separation (부탄올 분리용 투과증발 복합막 제조)

  • Kim, Sung-Soo;Kim, Hyoun-Young
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.54-62
    • /
    • 2009
  • Pervaporation membrane for butanol separation was prepared by hybrid process. Plasma treatment of commercial poly(dimethylsiloxane) (PDMS) membrane was attempted and combination of plasma treatment and PDMS solution coating on polysulfone, poly(ether imide) supports were also performed. Plasma treatment of PDMS membrane with hexane and silane group compounds was performed to increase the hydrophobicity of the surface, which enhanced the separation factor upto 12.5 at the expense of flux decrease down to $1.15kg/m^2{\cdot}hr$. Contact angle and relative sorption ratio were also related with hydrophobicity of the memrbane. Increase of PDMS prepolymer composition resulted in dense structure of coating layer with better separation factor. Effects of sequence of PDMS coating vs. plasma treatment were examined. It was found that plasma treatment with butanol and n-hexane plasma followed by PDMS coating showed better performance and vice versa for plasma treatment with hexamethyldisilane and hexamethyldisilazane.

Growth of single crystalline 3C-SiC thin films for high power semiconductor devices (고전력 반도체 소자용 단결정 3C-SiC 박막성장)

  • Shim, Jaen-Chul;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.6-6
    • /
    • 2010
  • This paper describes that single crystal cubic silicon (3C-SiC) films have been deposited on carbonized Si(100) substrate using hexamethyldisilane(HMDS, $Si_2(CH_3)_6$) as a safe organosilane single-source precursor and a nonflammable mixture of Ar and $H_2$ gas as the carrier gas by APCVD at $1280^{\circ}C$. The 3C-SiC film had a very good crystal quality without defects due to viods, a very low residual stress.

  • PDF

Raman characteristics of polycrysta1line 3C-SiC thin films grown on AlN buffer layer (AlN 버퍼층위에 성장된 다결정 3C-SiC 박막의 라만 특성)

  • Lee, Yun-Myung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.93-93
    • /
    • 2008
  • This paper presents the Raman scattering characteristics of poly (polycrystalline) 3C-SiC thin films deposited on AlN buffer layer by atmospheric pressure chemical vapor deposition (APCVD) using hexamethyldisilane (MHDS) and carrier gases (Ar + $H_2$).The Raman spectra of SiC films deposited on AlN layer of before and after annealings were investigated according to the growth temperature of 3C-SiC. Two strong Raman peaks, which mean that poly 3C-SiC admixed with nanoparticle graphite, were measured in them. The biaxial stress of poly 3C-SiC/AlN was calculated as 896 MPa from the Raman shifts of 3C-SiC deposited at $1180^{\circ}C$ on AlN of after annealing.

  • PDF