Preparation of Pervaporation Composite Membranes for Butanol Separation

부탄올 분리용 투과증발 복합막 제조

  • Kim, Sung-Soo (Department of Chemical Engineering, Regional Innovation Center, Kyung Hee University) ;
  • Kim, Hyoun-Young (Department of Chemical Engineering, Regional Innovation Center, Kyung Hee University)
  • 김성수 (경희대학교 화학공학과, 지역협력연구센터) ;
  • 김현영 (경희대학교 화학공학과, 지역협력연구센터)
  • Published : 2009.03.30

Abstract

Pervaporation membrane for butanol separation was prepared by hybrid process. Plasma treatment of commercial poly(dimethylsiloxane) (PDMS) membrane was attempted and combination of plasma treatment and PDMS solution coating on polysulfone, poly(ether imide) supports were also performed. Plasma treatment of PDMS membrane with hexane and silane group compounds was performed to increase the hydrophobicity of the surface, which enhanced the separation factor upto 12.5 at the expense of flux decrease down to $1.15kg/m^2{\cdot}hr$. Contact angle and relative sorption ratio were also related with hydrophobicity of the memrbane. Increase of PDMS prepolymer composition resulted in dense structure of coating layer with better separation factor. Effects of sequence of PDMS coating vs. plasma treatment were examined. It was found that plasma treatment with butanol and n-hexane plasma followed by PDMS coating showed better performance and vice versa for plasma treatment with hexamethyldisilane and hexamethyldisilazane.

부탄올을 투과증발 공정으로 분리하기 위하여 복합공정에 의하여 투과증발막을 제조하였다. 상업용 poly(dime-thylsiloxane) (PDMS) 막을 plasma 처리시키거나, polysulfone, poly(ether imide) 막을 지지체로 사용하여 plasma 처리 및 PDMS 코팅의 복합공정을 적용하였다. 헥산계열과 실란계열 유기 화합물을 사용하여 PDMS막을 plasma 처리하였을 경우 막 표면의 소수성을 증가시켜서 부탄을 선택도가 12.56까지 향상되었다. 반면에 투과량은 막 표면의 소수성 증대와 free volume의 변화로 인해 $1.15kg/m^2{\cdot}hr$까지 감소되어 선택도와 반대의 성향을 나타내었다. 막의 소수성이 증가함에 따라 접촉각과 상대적 sorption 비가 증가하였고, 부탄을 선택도도 향상되었다. PDMS 코팅 용액에서 prepolymer의 함량이 높을수록 부탄올 선택도가 증가하였다. PDMS 코팅과 plasma 처리 공정의 순서에 따른 영향을 조사하였다. 부탄올과 노르말 헥산으로 plasma 처리할 경우 plasma처리, PDMS 코팅 순으로 제조된 막의 분리 성능이 우수하였고 hexamethyldisilane과 hex-amethyldisilazane을 사용한 경우에는 역순으로 제조된 막의 분리 성능이 더 우수한 것으로 나타났다.

Keywords

References

  1. D. Roizard, R. Clément, P. Lochon, J. Kerres, and G. Eigenberger, 'Synthesis, characterization and transport properties of a new siloxane-phosphazene copolymer. Extraction of n-butanol from water by pervaporation', J. Membr. Sci., 113, 151 (1996) https://doi.org/10.1016/0376-7388(95)00243-X
  2. N. Qureshi and H. P. Blaschek, 'Butanol recovery from model solution/fermentation broth by pervaporation: evaluation of membrane performance', Biomass and Bioenergy, 17, 175 (1999) https://doi.org/10.1016/S0961-9534(99)00030-6
  3. H. Y. Kim, K. T. Lim, and S. S. Kim, 'Butanol separation/concentration by plasma treated pervaporation membrane', Membrane Journal, 10, 198 (2000)
  4. B. A. Wolf, 'Polymer-Solvent Interaction Parameters' in Polymer Handbook, 2nd ed., J. Brandrup, E. H. Immergut and E. A. Grulke, Editors, John Wiley, New York, chapter 4, (1975)
  5. M. Mulder, 'Basic Principles of Membrane Technology', Kluwer Academic Publishers, Dordrecht, pp. 75-77, 325-339 (1996)
  6. H. L. Fleming and C. Stewart Slater, 'Perva- poration', in Membrane Handbook, W. S. Winston Ho and Kamalesh K. Sirkar, Editors, Van Nostrand Reinhold, New York, pp. 132∼159 (1992)
  7. R. Y. M. Huang, et al., 'Pervaporation Membrane Separation Process', Elsevier Sci. Publishers B. V.,Amsterdam (1991)
  8. J. W. Rhim, C. K. Yeom, and S. W. Kim, 'Modifica-tion of poly (vinyl alcohol) membranes using sulfosuccinic acid and its application to pervaporation separation of water-alcohol mixtures', J. Appl. Polym. Sci., 68, 1717 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980613)68:11<1717::AID-APP1>3.0.CO;2-M
  9. J. W. Rhim and Y. K. Kim, 'Pervaporation separation of MTBE-Methanol mixtures using crosslinked PVA membrane', J. Appl. Polym. Sci., 75, 1699∼ 1707 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000401)75:14<1699::AID-APP3>3.0.CO;2-O
  10. J. W. Rhim et al., 'Surface modification of PVA membranes using surface modifying macromolecules and their application to pervaporation separation', Membrane Journal, 18, 206 (2008)
  11. Y. K. Hong and W. H. Hong, 'Influence of ceramic support on pervaporation characteristics of IPA/water mixtures using PDMS/ceramic composite membrane ', J. Membr. Sci., 159, 29 (1999) https://doi.org/10.1016/S0376-7388(99)00050-2
  12. H. J. Kim, Y. S. Song, and B. R. Min, 'The study on the Recovery of Volatile Organic Components by Pervaporation', Membrane Journal, 9(1), 51 (1999)
  13. I. Blume, J. G. Wijmans, and R. W. Baker, 'The separation of dissolved organics from water by pervaporation', J. Membr. Sci., 49, 253 (1990) https://doi.org/10.1016/S0376-7388(00)80643-2
  14. T. Uragami, T. Doi, and T. Miyata, 'Control of permselectivity with surface modifications of poly [1-(trimethylsilyl)-1-propyne] membranes', Int. J. Adhesion & Adhesives, 19, 405 (1999) https://doi.org/10.1016/S0143-7496(98)00064-5
  15. H. Wang, K. Tanaka, H. Kita, and K.-I. Okamoto, 'Pervaporation of aromatic/non-aromatic hydrocarbon mixtures through plasma-grafted membranes', J. Membr. Sci., 154, 221 (1999) https://doi.org/10.1016/S0376-7388(98)00298-1
  16. M.-Y. Teng, K.-R. Lee, D.-J. Liaw, Y.-S. Lin, and J.-Y. Lai, "Plasma deposition of acrylamide onto novel aromatic polyamide membrane for pervaporation", Euro. Poly. J., 36, 663 (2000) https://doi.org/10.1016/S0014-3057(99)00130-5
  17. B. K. Dutta and S. K. Sikdar, 'Separa- tion of volatile organic compounds from aqueous solutions by pervaporation using S--B--S block copolymer membranes', Environ. Sci. Technol., 33, 1709 (1999) https://doi.org/10.1021/es980689w
  18. I. J. Ball, S.-C. Huang, R. A. Wolf, J. Y. Shimano, and R. B. Kaner, "Pervaporation studies with polyaniline membranes and blends", J. Membr. Sci., 174, 161 (2000) https://doi.org/10.1016/S0376-7388(00)00387-2
  19. G. Geuskens, A. Etoc, and P. D. Michele, 'Surface modification of polymers VII.: Photochemical grafting of acrylamide and N-isopropylacrylamide onto polyethylene initiated by anthraquinone-2-sulfonate adsorbed at the surface of the polymer', Euro. Poly. J., 36, 265 (2000) https://doi.org/10.1016/S0014-3057(99)00192-5
  20. H. Yasuda, 'Plasma Polymerization', Academic Press Inc., London (1985)
  21. C. M. Chan, Polymer Surface Modification and Characterization, pp. 1-3, 193, 225-254, 265, Hanser/Gardner Publications Inc. (1994)
  22. H. Matsuyama, A. Kariya, and M. Teramoto, 'Characteristics of Plasma-Polymerized Membrane from Octamethyltrisiloxane and Its Application to the Pervaporation of Ethanol-Water Mixture', J. Membr. Sci., 88, 85 (1994) https://doi.org/10.1016/0376-7388(93)E0170-O
  23. D. S. Wavhai and E. R. Fisher, 'Hydrophilic modification of PES membrane by low temprrature plasma-induced graft polymerization', J. Membr. Sci., 209, 255 (2002) https://doi.org/10.1016/S0376-7388(02)00352-6
  24. C. T. Wright and D. R. Paul, 'Gas sorption and transport in UV-irradiated polyarylate copolymers based on tetramethyl bisphenol-A and dihydroxybenzophenone', J. Membr. Sci., 124, 161 (1997) https://doi.org/10.1016/S0376-7388(96)00215-3
  25. O. Gorbig, S. Nehlsen, and J. Muller, 'Hydrophobic properties of plasma polymerized thin film gas selective membranes', J. Membr, Sci., 138, 115 (1998) https://doi.org/10.1016/S0376-7388(97)00215-9
  26. R. E. Kesting, 'Synthetic Polymeric Membranes', John Wiley, New York, p. 479 (1985)
  27. A. Yamasaki, R. K. Tyagi, A. E. Fouda, T. Matsuura, and K. Jonasson, 'Effect of gelation conditions on gas separation performance for asymmetric polysulfone membranes', J. Membr. Sci., 123, 89 (1997) https://doi.org/10.1016/S0376-7388(96)00204-9
  28. H. Ettouney and U. Majeed, 'Permeability functions for pure and mixture gases in silicone rubber and polysulfone membranes: Dependence on pressure and composition', J. Membr. Sci., 135, 251 (1997) https://doi.org/10.1016/S0376-7388(97)00150-6
  29. I. F. J. Vankelecom, B. Moermans, G. Verschueren, and P. A. Jacobs, 'Intrusion of PDMS top layers in porous supports', J. Membr. Sci., 158, 289 (1999) https://doi.org/10.1016/S0376-7388(99)00036-8
  30. H. Yang, Q. Trong Nguyen, Y. Ding, Y. C. Long, and Z. Ping, 'Investigation of poly(dimethyl siloxane) (PDMS)-solvent interactions by DSC', J. Membr. Sci., 164, 37 (2000) https://doi.org/10.1016/S0376-7388(99)00187-8