Browse > Article
http://dx.doi.org/10.5369/JSST.2013.22.3.175

Influence of Carbonization Conditions in Hydrogen Poor Ambient Conditions on the Growth of 3C-SiC Thin Films by Chemical Vapor Deposition with a Single-Source Precursor of Hexamethyldisilane  

Kim, Kang-San (Tokai Carbon Korea)
Chung, Gwiy-Sang (School of Electrical Engineering, University of Ulsan)
Publication Information
Journal of Sensor Science and Technology / v.22, no.3, 2013 , pp. 175-180 More about this Journal
Abstract
This paper describes the characteristics of cubic silicon carbide (3C-SiC) films grown on a carbonized Si(100) substrate, using hexamethyldisilane (HMDS, $Si_2(CH_3)_6$) as a safe organosilane single precursor in a nonflammable $H_2$/Ar ($H_2$ in Ar) mixture carrier gas by atmospheric pressure chemical vapor deposition (APCVD) at $1280^{\circ}C$. The growth process was performed under various conditions to determine the optimized growth and carbonization condition. Under the optimized condition, grown film has a single crystalline 3C-SiC with well crystallinity, small voids, low residual stress, low carrier concentration, and low RMS. Therefore, the 3C-SiC film on the carbonized Si (100) substrate is suitable to power device and MEMS fields.
Keywords
Crystalline 3C-SiC; Carbonization; CVD; Hexamethyldisilane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Nishino, J. A. Powell, and H. A. Will, "Production of large-area single-crystal wafers of cubic SiC for semiconductor devices", Appl. Phys. Lett., Vol. 42, pp. 460-463, 1982.
2 N. Kubo, T. Kawase, S. Asahina, N. Kanayama, H. Tsuda, A. Moritani, and K. Kitahara, "Growth of SiC films using tetraethylsilane", Mater. Sci. Forum, pp. 269-273, 2004.
3 K. Takahashi, S. Nishino, and J. Saraie, "Lowtemperature growth of 3C-SiC on Si substrate by chemical vapor deposition using hexamethyldisilane as a source material", J. Electrochem. Soc., Vol. 139, pp. 3565-3571, 1992.   DOI
4 N. Nordell, S. Nishino, J. W. Yang, C. Jacob, and P. Pirouz, "Growth of SiC using hexamethyldisilane in a hydrogen-poor ambient", Appl. Phys. Lett., Vol. 64, pp. 1647-1649, 1994.   DOI   ScienceOn
5 C. H. Wu, C. Jacob, X. J. Ning, S. Nishino, and P. Pirouz, "Epitaxial growth of 3C SiC on Si(111) from hexamethyldisilane", J. Cryst. Growth, Vol. 158, pp. 480-490, 1996.   DOI   ScienceOn
6 A. J. Steckl and J. P. Li, "Uniform $\beta$-SiC thin-film growth on Si by low pressure rapid thermal chemical vapor deposition", IEEE Trans. Electron Dev., Vol. 39, pp. 64-66, 1992.   DOI   ScienceOn
7 N. Kubo, T. Kawase, S. Asahina, N. Kanayama, H. Tsuda, A. Moritani, and K. Kitahara, "Epitaxial growth of 3C-SiC on Si(111) using hexamethyldisilane and tetraethylsilane", Jpn. J. App. Phys., Vol. 43, pp. 7654-7660, 2004.   DOI
8 R. J. Iwanowski, K. Fronc, W. Paszkowicz, and M. Heinonen, "XPS and XRD study of crystalline 3CSiC grown by sublimation method", J. Allowys Compd., Vol. 286, pp. 143-147, 1999.   DOI   ScienceOn
9 G. Ferro, J. Camassel, S. Juillaguet, C. Balloud,E. K. Polychroniadis, Y. Stoemenos, J. Dazord, H. Peyre,Y. Monteil, S. A. Rushworth, and L. M. Smith, "Hexamethyldisilane/propane versus silane/propane precursors: application to the growth of high-quality 3C-SiC on Si", Semicond. Sci. Tech., Vol. 18, p. 1015, 2003.   DOI   ScienceOn
10 W. L. Zhu, J. L. Zhu, S. Nishino, and G. Pezzotti, "Spatially resolved Raman spectroscopy evaluation of residual stresses in 3C-SiC layer deposited on Si substrates with different crystallographic orientations", Appl. Surf. Sci., Vol. 252, pp. 2346-2354, 2006.   DOI   ScienceOn
11 A. Severino, C. Frewin, C. Bongiorno, R. Anzalone, S. E. Saddow, and F. La Via, "Structural defects in (100) 3C-SiC heteroepitaxy: Influence of the buffer layer morphology on generation and propagation of stacking faults and micro twins", Diam. Relat. Mater., Vol. 18, pp. 1440-1449, 2009.   DOI   ScienceOn
12 J. H. Boo, S. B. Lee, K. S. Yu, M. M. Sung, and Y. Kim, "Grwoth of $TiO_2$ thin films on Si(100) substrates using single molecular presursors by metal organic chemical capor deposition", Surf. Coat. Tech., Vol. 131, pp. 88-92, 2000.   DOI   ScienceOn
13 C. D. Stinespring and J. C. Wormhout, "Surface studies relevant to silicon carbide chemical vapor deposition", J. Appl. Phys., Vol. 65, pp. 1733-1742, 1989.   DOI
14 J. B. Casady and R. W. Johnson, "Status of silicon carbide as a wide-bandgap semiconductor for hightemperature applications: A review", Solid State Electron., Vol. 39, pp. 1409-1422, 1996.   DOI   ScienceOn
15 A. Elasser, "Silicon carbide benefits and advantages for power electronics circuits and systems", Proc. IEEE, Vol. 90, pp. 969-986, 2002.   DOI   ScienceOn
16 M. Mehregany, C. A. Zorman, S. Roy, A. J. Fleischman, C. H. Wu, and N. Rajan, "Silicon carbide for microelectromechanical systems", Inter. Mater. Rev., Vol. 45, pp. 85-108, 2000.   DOI   ScienceOn
17 M. Bhatnagar and B. J. Baliga, "Comparison of 6HSiC, 3C-SiC, and Si for power devices", IEEE Trans. Electron Dev., Vol. 40, pp. 645-655, 1993.   DOI   ScienceOn
18 A. R. Hefner, R. Singh, J. S. Lai, D. W. Berning, S. Bouche, and C. Chapuy, "High-power modular multilevel converters with SiC JFETs", IEEE Trans. Power Electron., Vol. 16, pp. 273-280, 2010.
19 H. Okumura, "Present status and future prospect of widegap semiconductor high-power devices", Jpn. J. Appl. Phys., Vol. 45, pp. 7565-7586, 2006.   DOI