• Title/Summary/Keyword: Hexagonal Si

Search Result 172, Processing Time 0.037 seconds

Preparation and Catalytic Activity of Morphologically Controlled MoO3/SiO2 for Hydrodesulfurization (결정상과 분산도의 조절이 가능한 MoO3/SiO2 촉매의 제조 및 탈황반응특성 연구)

  • Ha, Jin-Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.231-236
    • /
    • 1999
  • Several series of morphologically controlled $MoO_3$/$SiO_2$ catalysts were prepared, characterized, and tested for hydrodesulfurization (HDS) of dibenzothiophene (DBT) activity. Molybdenum surface loaded with 4.0 atoms $Mo/nm^2$ was prepared as sintered hexagonal and sintered orthorhombic, as well as a novel "well dispersed hexagonal" phase. Characterization by XRD, Raman, and $O_2$ chemisorption results reveals that the dispersion of $MoO_3$ over silica depends on the final $MoO_3$ phase in the order of; sintered hexagonal < sintered orthorhombic < dispersed hexagonal phase. Temperature programmed reduction (TPR) results show that both bulk and dispersed microcrystalline of $MoO_3$ reduce to $MoO_2$ at $650^{\circ}C$ and to Mo metal at $1000^{\circ}C$. HDS of DBT was performed in a differential reactor at 30 atm over the temperature range $350{\sim}500^{\circ}C$. Activity of $MoO_3$/$SiO_2$ toward HDS of DBT is proportional to dispersion.

  • PDF

Properties of Yttrium Manganates with MFS Structure Fabricated on Various Substates (MFS 구조로 적층된 Yttrium Manganates의 기판 변화에 따른 특성 연구)

  • 강승구
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.206-211
    • /
    • 2003
  • Effects of substrates and buffer layer upon the formation of crystalline phases and ferroelectricity of $YMnO_3$ thin films were investigated. The hexagonal $YMnO_3$ was easily formed on Si(100) while the mixed phases, hexagonal and orthorhombic $YMnO_3$, on $Pt(111)/TiO_2/SiO_2/Si$ substrate. When the $Y_2O_3$ buffer layer of 70 nm thick was inserted between the substrates and the $YMnO_3,$ the c-axis oriented hexagonal single phase formed on both substrates, Si(100) and $Pt(111)/TiO_2/SiO_2/Si$. The leakage current density of the hexagonal $YMnO_3$ thin films was lower than that consisting of mixed phases, hexagonal and orthorhombic. Furthermore the hexagonal $YMnO_3$ with c-axis preferred orientation showed the lowest leakage current density. The remnant polarization from a P-E hysteresis curve for the $YMnO_3$ formed on Si(100) was 0.14 without buffer layer and $0.24_{mu}C/cm^2$ for that with buffer layer. For the $Pt(111)/TiO_3/SiO_3/Si$ substrates, the specimen without $Y_2O_3$buffer layer did not show the hysteresis curve, while the buffer-layered has the remnant polarization of $1.14_{mu}C/cm^2$. It was concluded that the leakage current density and the ferroelectricity for the $YMnO_3$ thin films could be controlled by varying crystalline phases and their preferred orientation which depend on the kind of substrates and whether the $Y_2O_3$buffer layer exist or not.

Growth of hexagonal Si epilayer on 4H-SiC substrate by mixed-source HVPE method (혼합 소스 HVPE 방법에 의한 4H-SiC 기판 위의 육각형 Si 에피층 성장)

  • Kyoung Hwa Kim;Seonwoo Park;Suhyun Mun;Hyung Soo Ahn;Jae Hak Lee;Min Yang;Young Tea Chun;Sam Nyung Yi;Won Jae Lee;Sang-Mo Koo;Suck-Whan Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.45-53
    • /
    • 2023
  • The growth of Si on 4H-SiC substrate has a wide range of applications as a very useful material in power semiconductors, bipolar junction transistors and optoelectronics. However, it is considerably difficult to grow very fine crystalline Si on 4H-SiC owing to the lattice mismatch of approximately 20 % between Si and 4H-SiC. In this paper, we report the growth of a Si epilayer by an Al-related nanostructure cluster grown on a 4H-SiC substrate using a mixed-source hydride vapor phase epitaxy (HVPE) method. In order to grow hexagonal Si on the 4H-SIC substrate, we observed the process in which an Al-related nanostructure cluster was first formed and an epitaxial layer was formed by absorbing Si atoms. From the FE-SEM and Raman spectrum results of the Al-related nanostructure cluster and the hexagonal Si epitaxial layer, it was considered that the hexagonal Si epitaxial layer had different characteristics from the general cubic Si structure.

Preparation of Ferroelectric $YMnO_3$ Thin Films by Metal-Organic Decomposition Process and their Characterization (Metal-Organic Decomposition법에 의한 강유전성 $YMnO_3$ 박막의 제조 및 특성)

  • 김제헌;강승구;김응수;김유택;심광보
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.665-672
    • /
    • 2000
  • The ferroelectric YMnO3 thin films were prepared by MOD(metal-organic decomposition) method with Y- and Mn-acetylacetonate as starting materials. Thin films were grown on various substrates by spin-coating technique. The crystalline phases of the thin films were identified by X-ray diffractometer as a function of heat-treatment temperature, pH of coating solution and substrate. In addition, the effect of Mn/Y molar ratio(0.8~1.2) on the formation of hexagonal-YMnO3 phase was investigated. In forming highly c-axisoriented hexagonal-YMnO3 single phase, the Pt coated Si substrate was more effective than the bare Si substrate, and the optimum heat-treatment condition was at 82$0^{\circ}C$ for 30 min. Higher Mn/Y molar ratio within 0.8~1.2 and pH of YMnO3 precursor solution within 0.5~2.5 favored formation of ferroelectric hexagonal phase rather than orthorhombic phase. Leakage current density of the hexagonal-YMnO3 thin film formed on Pt(111)/TiO2/SiO2/Si substrate was low enough as 0.4~4.0$\times$10-8(A/$\textrm{cm}^2$) at 5 V and its remanent polarization(Pr), calculated from the P-E hysteresis loop, was 3 nC/$\textrm{cm}^2$.

  • PDF

Growth of Ga2O3 films on 4H-SiC substrates by metal organic chemical vapor deposition and their characteristics depend on crystal phase (유기 금속 화학 증착법(MOCVD)으로 4H-SiC 기판에 성장한 Ga2O3 박막과 결정 상에 따른 특성)

  • Kim, So Yoon;Lee, Jung Bok;Ahn, Hyung Soo;Kim, Kyung Hwa;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.149-153
    • /
    • 2021
  • ε-Ga2O3 thin films were grown on 4H-SiC substrates by metal organic chemical vapor deposition (MOCVD) and crystalline quality were evaluated depend on growth conditions. It was found that the best conditions of the ε-Ga2O3 were grown at a growth temperature of 665℃ and an oxygen flow rate of 200 sccm. Two-dimensional growth was completed after the merge of hexagonal nuclei, and the arrangement direction of hexagonal nuclei was closely related to the crystal direction of the substrate. However, it was confirmed that crystal structure of the ε-Ga2O3 had an orthorhombic rather than hexagonal. Crystal phase transformation was performed by thermal treatment. And a β-Ga2O3 thin film was grown directly on 4H-SiC for the comparison to the phase transformed β-Ga2O3 thin film. The phase transformed β-Ga2O3 film showed better crystal quality than directly grown one.

The Effect of Precursor pH and Calcination Temperature on the Molybdenum Species over Silica Surface (전구체의 pH와 소성 온도가 실리카에 담지된 몰리브드늄 활성종에 미치는 영향)

  • Ha Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.558-561
    • /
    • 2004
  • The morphology of silica supported $MoO_{3}$ catalysts, which was prepared by impregnation of ammonium heptamolybdate(AHM) with various surface loadings up to 4 atoms $Mo/nm^{2}$, was studied using x-ray diffraction(XRD). All morphologies of silica supported $MoO_{3}$ appear to be thermodynamically driven. For high loaded catalysts there appeared three states: a sintered and well-dispersed hexagonal state at moderate temperature calcination($300^{\circ}C$), and a sintered orthorhombic state at high temperature calcination($500^{\circ}C$). Whereas the sintered orthorhombic phase is detected by XRD at loadings in excess of 1.1 atom $Mo/nm^{2}$, the well-dispersed hexagonal phase is not detected even until 4.0 $atomsMo/nm^{2}$. The higher apparent dispersion of the hexagonal phase may arise from some role of ammonia which results in a stronger $MoO_{3}-SiO_{2}$ surface interaction.

  • PDF

Hexagonal shape Si crystal grown by mixed-source HVPE method (혼합소스 HVPE 방법에 의해 성장된 육각형 Si 결정)

  • Lee, Gang Seok;Kim, Kyoung Hwa;Park, Jung Hyun;Kim, So Yoon;Lee, Ha Young;Ahn, Hyung Soo;Lee, Jae Hak;Chun, Young Tea;Yang, Min;Yi, Sam Nyung;Jeon, Injun;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.103-111
    • /
    • 2021
  • Hexagonal shape Si crystals were grown by the mixed-source hydride vapor phase epitaxy (HVPE) method of mixing solid materials such as Si, Al and Ga. In the newly designed atmospheric pressure mixed-source HVPE method, nuclei are formed by the interaction between GaCln, AlCln and SiCln gases at a high temperature of 1200℃. In addition, it is designed to generate a precursor gas with a high partial pressure due to the rapid reaction of Si and HCl gas. The properties of hexagonal Si crystals were investigated through scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution X-ray diffraction (HR-XRD), and Raman spectrum. From these results, it is expected to be applied as a new material in the Si industry.

A study on the etch pits morphology and the defect in as-grown SiC single crystals (SiC 단결정의 etch pit 형상과 결함에 관한 고찰)

  • 강승민
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.373-377
    • /
    • 2000
  • For 6H-SiC single crystals which was obtained by sublimation growth (modified Lely process), the relation between the defects and the etch pits to be formed at the site of dislocations were discussed. Typical hexagonal etch pits were formed on (0001) basal plane. The similar hexagonal etch pit shapes were formed on the site of micropipe defects and it was realized that internal planar defects was formed with the same matrix crystal structure as grown crystals, through the observation of the etching morphology at those internal defects.

  • PDF

Derivation of Cubic and Hexagonal Mesoporous Silica Films by Spin-coating

  • Pan, Jia-Hong;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.418-422
    • /
    • 2005
  • By introducing spin-coating method to the evaporation induced self-assembly (EISA) process, a simple and reproducible route in controlling the mesophase of silica thin films has been developed for the first time in this work. When a comparatively solvent-rich Si-sol (The atomic ratio of TEOS : F127 : HCl : $H_2O$ : EtOH = 1 : 0.006 : 0.2 : 9.2 : 30) was used as coating solution, the mesophase of resultant silica films was selectively controlled by adjusting the spin-on speed. The cubic mesophase has been obtained from the coating at a low rpm, such as 600 rpm, while the 2-D hexagonal mesophase is formed at a high rpm, such as 2,500 rpm. At a medium coating speed, a mixture of cubic and hexagonal mesophase has been found in the fabricated films. The present results confirm that the evaporation rate of volatile components at initial step is critical for the determination of mesopore structures during the EISA process.