• 제목/요약/키워드: Heterojunction structure

검색결과 133건 처리시간 0.027초

단일양자 우물구조로 된 InGaAs/InAlAs의 밴드간 공명 터널링 다이오드에 관한 연구 (InGaAs/InAIAs resonant interband tunneling diodes(RITDs) with single quantum well structure)

  • 김성진;박영석;이철진;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1456-1458
    • /
    • 1996
  • In resonant tunneling diodes with the quantum well structure showing the negative differential resistance (NDR), it is essential to increase both the peak-to-valley current ratio (PVCR) and the peak current density ($J_p$) for the accurate switching operation and the high output of the device. In this work, a resonant interband tunneling diode (RITD) with single quantum well structure, which is composed of $In_{0.53}Ga_{0.47}As/ln_{0.52}Al_{0.48}As$ heterojunction on the InP substrate, is suggested to improve the PVCR and $J_p$ through the narrowed tunnel barriers. As the result, the measured I-V curves showed the PVCR over 60.

  • PDF

Small Molecular Solar Cells toward Improved Efficiency and Stability

  • 김지환;김효정;정원익;김태민;이영은;김세용;김장주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.73-73
    • /
    • 2011
  • We will report a few methods to improve the efficiency and stability in small molecule based organic solar cells, including the formation of bulk heterojunctions (BHJs) through alternative thermal deposition (ATD), the use of a micro-cavity structure and interface modifications. By ATD which is a simple modification of conventional thermal evaporation, the thicknesses of alternative donor and acceptor layers were precisely controlled down to 0.1 nm, which is critical to form BHJs. The formation of a BHJ in copper(II) phthalocyanine (CuPc) and fullerene (C60) systems was confirmed by AFM, GISAXS and absorption measurements. From analysis of the data, we found that the CuPc|C60 films fabricated by ATD were composed of the nanometer sized disk shaped CuPc nano grains and aggregated C60, which explains the phase separation of CuPc and C60. On the other hand, the co-deposited CuPc:C60 films did not show the existence of separated CuPc nano grains in the CuPc:C60 matrix. The OPV cells fabricated using the ATD method showed significantly enhanced power conversion efficiency compared to the co-deposited OPV cells under a same composition [1]. We will also present by numerical simulation that adoption of microcavity structure in the planar heterojunction can improve the short circuit current in single and tandem OSCs [2]. Interface modifications also allowed us to achieve high efficiency and high stability OSCs.

  • PDF

Visible-Light-Driven Catalytic Disinfection of Staphylococcus aureus Using Sandwich Structure g-C3N4/ZnO/Stellerite Hybrid Photocatalyst

  • Zhang, Wanzhong;Yu, Caihong;Sun, Zhiming;Zheng, Shuilin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.957-967
    • /
    • 2018
  • A novel $g-C_3N_4$/ZnO/stellerite (CNZOS) hybrid photocatalyst, which was synthesized by coupled hydro thermal-thermal polymerization processing, was applied as an efficient visible-light-driven photocatalyst against Staphylococcus aureus. The optimum synthesized hybrid photocatalyst showed a sandwich structure morphology with layered $g-C_3N_4$ (doping amount: 40 wt%) deposited onto micron-sized ZnO/stellerite particles (ZnO average diameter: ~18 nm). It had a narrowing band gap (2.48 eV) and enlarged specific surface area ($23.05m^2/g$). The semiconductor heterojunction effect from ZnO to $g-C_3N_4$ leads to intensive absorption of the visible region and rapid separation of the photogenerated electron-hole pairs. In this study, CNZOS showed better photocatalytic disinfection efficiency than $g-C_3N_4/ZnO$ powders. The disinfection mechanism was systematically investigated by scavenger-quenching methods, indicating the important role of $H_2O_2$ in both systems. Furthermore, $h^+$ was demonstrated as another important radical in oxidative inactivation of the CNZOS system. In respect of the great disinfection efficiency and practicability, the CNZOS heterojunction photocatalyst may offer many disinfection applications.

태양전지용 CdS 박막의 제조 조건에 따른 전기적 광학적 특성에 관한 연구 (A Study on the Electrical and Optical Properties of CdS Thin Films Deposited with Different Conditions for Solar Cell Applications)

  • 이재형
    • 한국전기전자재료학회논문지
    • /
    • 제21권7호
    • /
    • pp.620-628
    • /
    • 2008
  • Cadmium sulphide (CdS) thin film, which is used as a window layer of heterojunction solar cell, on the glass substrate was deposited by vacuum evaporation. Effects of deposition conditions such as the source and substrate temperature on electrical and optical properties of CdS films was investigated. As the source temperature was increased, the deposition rate of CdS films was increased. In addition, the optical transmittance and the electrical resistivity of CdS films were decreased as the source temperature was increased. This results were attributed to the increase of excess Cd amount in the film. The crystal structure of CdS films exhibited the hexagonal phase with preferential orientation of the (002) plane. As the substrate temperature was increased, the crystal structure of CdS films was improved and the resistivity of the films was increased due to the decrease of excess Cd in film.

Investigation of bias illumination stress in solution-processed bilayer metal-oxide thin-film transistors

  • Lee, Woobin;Eom, Jimi;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.302.1-302.1
    • /
    • 2016
  • Solution-processed amorphous metal-oxide thin-film transistors (TFTs) are considered as promising candidates for the upcoming transparent and flexible electronics due to their transparent property, good performance uniformity and possibility to fabricate at a low-temperature. In addition, solution processing metal oxide TFTs may allow non-vacuum fabrication of flexible electronic which can be more utilizable for easy and low-cost fabrication. Recently, for high-mobility oxide TFTs, multi-layered oxide channel devices have been introduced such as superlattice channel structure and heterojunction structure. However, only a few studies have been mentioned on the bias illumination stress in the multi- layered oxide TFTs. Therefore, in this research, we investigated the effects of bias illumination stress in solution-processed bilayer oxide TFTs which are fabricated by the deep ultraviolet photochemical activation process. For studying the electrical and stability characteristics, we implemented positive bias stress (PBS) and negative bias illumination stress (NBIS). Also, we studied the electrical properties such as field-effect mobility, threshold voltage ($V_T$) and subthreshold slop (SS) to understand effects of the bilayer channel structure.

  • PDF

Spectroscopic Ellipsometer를 이용한 a-Si:H/c-Si 이종접합 태양전지 박막 분석 (A Novel Analysis Of Amorphous/Crystalline Silicon Heterojunction Solar Cells Using Spectroscopic Ellipsometer)

  • 지광선;어영주;김범성;이헌민;이돈희
    • 신재생에너지
    • /
    • 제4권2호
    • /
    • pp.68-73
    • /
    • 2008
  • It is very important that constitution of good hetero-junction interface with a high quality amorphous silicon thin films on very cleaned c-Si wafer for making high efficiency hetero-junction solar cells. For achieving the high efficiency solar cells, the inspection and management of c-Si wafer surface conditions are essential subjects. In this experiment, we analyzed the c-Si wafer surface very sensitively using Spectroscopic Ellipsometer for < ${\varepsilon}2$ > and u-PCD for effective carrier life time, so we accomplished < ${\varepsilon}2$ > value 43.02 at 4.25eV by optimizing the cleaning process which is representative of c-Si wafer surface conditions very well. We carried out that the deposition of high quality hydrogenated silicon amorphous thin films by RF-PECVD systems having high density and low crystallinity which are results of effective medium approximation modeling and fitting using spectroscopic ellipsometer. We reached the cell efficiency 12.67% and 14.30% on flat and textured CZ c-Si wafer each under AM1.5G irradiation, adopting the optimized cleaning and deposition conditions that we made. As a result, we confirmed that spectroscopic ellipsometry is very useful analyzing methode for hetero-junction solar cells which need to very thin and high quality multi layer structure.

  • PDF

n-ITO/p-PSL 이종접합형 광검출 소자의 제조 및 그 특성 (Fabrication of n-ITO/p-PSL heterojunction type photodetectors and their characteristics)

  • 김항규;신장규;이종현;송재원
    • 센서학회지
    • /
    • 제4권1호
    • /
    • pp.3-8
    • /
    • 1995
  • ITO(indium tin oxide)와 PSL(porous silicon layer)을 이용하여 n-ITO/p-PSL 이종접합형 광검출 소자를 실리콘 기판상에 제조하였다. 실리콘 질화막과 Ni-Cr/Au를 이용하여 선택적으로 양극반응을 시켰으며, 각 소자를 메사구조로 정의하여 소자간을 격리하였고 ITO를 이용하여 소자의 열화문제를 억제시켰다. 제조된 소자에 백색광을 $0{\sim}3000Lux$까지 변화시키면서 얻은 I-V 특성으로부터 광전류가 입사된 광량에 선형적으로 비례함을 알았다. 제조된 소자는 약 -40V의 역방향 바이어스까지 안정되게 동작하였으며 암전류 밀도가 약 $40nA/mm^{2}$로 나타났다. Xe램프를 이용하여 $400nm{\sim}1100nm$까지 파장을 변화시키면서 측정한 결과 $600nm{\sim}700nm$사이에서 약 0.6A/W의 광응답을 나타내었다. 또한 제조된 소자는 3주 경과 후에도 거의 특성의 변화가 관찰되지 않았다.

  • PDF

Characterizations of i-a-Si:H and p-a-SiC:H Film using ICP-CVD Method to the Fabrication of Large-area Heterojunction Silicon Solar Cells

  • Jeong, Chae-Hwan;Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권2호
    • /
    • pp.73-78
    • /
    • 2008
  • We investigated for comparison of large-area i-a-Si:H and p-a-SiC:H film quality like thickness uniformity, optical bandgap and surface roughness using both ICP-CVD and PECVD on the large-area substrate(diameter of 100 mm). As a whole, films using ICP-CVD could be achieved much uniform thickness and bandgap of that using PECVD. For i-a-Si:H films, its uniformity of thickness and optical bandgap were 2.8 % and 0.38 %, respectively. Also, thickness and optical bandgap of p-a-SiC:H films using ICP-CVD could be obtained at 1.8 % and 0.3 %, respectively. In case of surface roughness, average surface roughness (below 5 nm) of ICP-CVD film could be much better than that (below 30 nm) of PECVD film. HIT solar cell with 2 wt%-AZO/p-a-SiC:H/i-a-Si:H/c-Si/Ag structure was fabricated and characterized with diameter of 152.3 mm in this large-area ICP-CVD system. Conversion efficiency of 9.123 % was achieved with a practical area of $100\;mm\;{\times}\;100\;mm$, which can show the potential to fabrication of the large-area solar cell using ICP-CVD method.

MoO3 기반 실리콘 이종접합 IR 영역 광검출기 개발 (MoO3/p-Si Heterojunction for Infrared Photodetector)

  • 박왕희;김준동;최인혁
    • 한국전기전자재료학회논문지
    • /
    • 제30권8호
    • /
    • pp.525-529
    • /
    • 2017
  • Molybdenum oxide ($MoO_3$) offers pivotal advantages for high optical transparency and low light reflection. Considering device fabrication, n-type $MoO_3$ semiconductor can spontaneously establish a junction with p-type Si. Since the energy bandgap of Si is 1.12 eV, a maximum photon wavelength of around 1,100 nm is required to initiate effective photoelectric reaction. However, the utilization of infrared photons is very limited for Si photonics. Hence, to enhance the Si photoelectric devices, we applied the wide energy bandgap $MoO_3$ (3.7 eV) top-layer onto Si. Using a large-scale production method, a wafer-scale $MoO_3$ device was fabricated with a highly crystalline structure. The $MoO_3/p-Si$ heterojunction device provides distinct photoresponses for long wavelength photons at 900 nm and 1,100 nm with extremely fast response times: rise time of 65.69 ms and fall time of 71.82 ms. We demonstrate the high-performing $MoO_3/p-Si$ infrared photodetector and provide a design scheme for the extension of Si for the utilization of long-wavelength light.

화학기상증착법을 통한 고품질 단층 MoSe2합성 및 반데르발스 수직이종 접합 구조 기반 고성능 트랜지스터 제작 (Chemical Vapor Deposition of High-Quality MoSe2 Monolayer and Its Application to van der Waals Heterostructure-Based High-Performance Field-Effect Transistors)

  • 임시헌;김선우;최선연;김현호
    • 접착 및 계면
    • /
    • 제24권1호
    • /
    • pp.36-40
    • /
    • 2023
  • 반데르발스 물질이란 층간 결합이 약한 반데르발스 결합으로 이루어진 이차원 층상구조를 지닌 물질을 의미하며, 이러한 반데르발스 이차원 소재를 이용한 이종접합 구조 연구는 그래핀이 발견된 이후 꾸준히 연구되고 있다. 본 논문에서는 대기압 화학기상증착법을 통해 성장된 단층 단결정 MoSe2를 기반으로하는 반데르발스 이종접합 트랜지스터 소자에 대해 보고한다. 최적화된 공정조건에서 성장된 MoSe2는 원자수준의 결함이 존재하지 않는 것을 밝혔으며, 이를 이용한 트랜지스터 소자 또한 우수한 특성을 보인다는 것을 밝혀내었다.