Browse > Article
http://dx.doi.org/10.4014/jmb.1712.12057

Visible-Light-Driven Catalytic Disinfection of Staphylococcus aureus Using Sandwich Structure g-C3N4/ZnO/Stellerite Hybrid Photocatalyst  

Zhang, Wanzhong (School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing))
Yu, Caihong (School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing))
Sun, Zhiming (School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing))
Zheng, Shuilin (School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing))
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.6, 2018 , pp. 957-967 More about this Journal
Abstract
A novel $g-C_3N_4$/ZnO/stellerite (CNZOS) hybrid photocatalyst, which was synthesized by coupled hydro thermal-thermal polymerization processing, was applied as an efficient visible-light-driven photocatalyst against Staphylococcus aureus. The optimum synthesized hybrid photocatalyst showed a sandwich structure morphology with layered $g-C_3N_4$ (doping amount: 40 wt%) deposited onto micron-sized ZnO/stellerite particles (ZnO average diameter: ~18 nm). It had a narrowing band gap (2.48 eV) and enlarged specific surface area ($23.05m^2/g$). The semiconductor heterojunction effect from ZnO to $g-C_3N_4$ leads to intensive absorption of the visible region and rapid separation of the photogenerated electron-hole pairs. In this study, CNZOS showed better photocatalytic disinfection efficiency than $g-C_3N_4/ZnO$ powders. The disinfection mechanism was systematically investigated by scavenger-quenching methods, indicating the important role of $H_2O_2$ in both systems. Furthermore, $h^+$ was demonstrated as another important radical in oxidative inactivation of the CNZOS system. In respect of the great disinfection efficiency and practicability, the CNZOS heterojunction photocatalyst may offer many disinfection applications.
Keywords
Water disinfection; S. aureus; $g-C_3N_4$/ZnO/stellerite; visible light irradiation; ROS;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Li J, Yin Y, Liu E, Ma Y, Wan J, Fan J, et al. 2017. In situ growing $Bi_2MoO_6$ on g-$C_3N_4$ nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. J. Hazard. Mater. 321: 183-192.   DOI
2 Chen Y, Lu A, Li Y, Zhang L, Yip HY, Zhao H, et al. 2011. Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environ. Sci. Technol. 45: 5689-5695.   DOI
3 Fang H, Gao Y, Li G, An J, Wong PK, Fu H, et al. 2013. Advanced oxidation kinetics and mechanism of preservative propylparaben degradation in aqueous suspension of $TiO_2$ and risk assessment of its degradation products. Environ. Sci. Technol. 47: 2704-2712.   DOI
4 Li G, Nie X, Chen J, Jiang Q, An T, Wong PK, et al. 2015. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-$C_3N_4$/$TiO_2$ hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res. 86: 17-24.   DOI
5 Wang W, Ng TW, Ho WK, Huang J, Liang S, An T, et al. 2013. $CdIn_2S_4$ microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: synthesis, characterizations and photocatalytic inactivation mechanisms. Appl. Catal. B Environ. 129: 482-490.   DOI
6 Wang W, Yu JC, Xia D, Wong PK, Li Y. 2013. Graphene and g-$C_3N_4$ nanosheets cowrapped elemental ${alpha}$-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ. Sci. Technol. 47: 8724-8732.   DOI
7 Li XH, Wang X, Antonietti M. 2012. Mesoporous g-$C_3N_4$ nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 3: 2170-2174.   DOI
8 Sundrarajan M, Ambika S, Bharathi K. 2015. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 26: 1294-1299.   DOI
9 Adhikari SP, Pant HR, Kim JH, Kim HJ, Park CH, Kim CS. 2015. One pot synthesis and characterization of Ag-ZnO/ g-$C_3N_4$ photocatalyst with improved photoactivity and antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 482: 477-484.   DOI
10 Pant HR, Pant B, Han JK, Amarjargal A, Chan HP, Tijing LD, et al. 2013. A green and facile one-pot synthesis of Ag-ZnO/ rGO nanocomposite with effective photocatalytic activity for removal of organic pollutants. Ceram. Int. 39: 5083-5091.   DOI
11 Yang Y, Guo Y, Liu F, Yuan X, Guo Y, Zhang S, et al. 2013. Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal. B Environ. 142-143: 828-837.   DOI
12 Alswat AA, Ahmad MB, Saleh TA, Hussein MZ, Ibrahim NA. 2016. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater. Sci. Eng. C 68: 505-511.   DOI
13 Munoz-Batista M J, N asalevich MA, Savenije T J, K apteijn F, Gascon J, Kubacka A, et al. 2015. Enhancing promoting effects in $g-C_3N_4-Mn^{2+}$/$CeO_2-TiO_2$ ternary composites: photohandling of charge carriers. Appl. Catal. B Environ. 176-177: 687-698.   DOI
14 Xiong M, Chen L, Yuan Q, He J, Luo SL, Au CT, et al. 2014. Facile fabrication and enhanced photosensitized degradation performance of the $g-C_3N_4-Bi_2O_2CO_3$ composite. Dalton Trans. 43: 8331-8337.   DOI
15 Yan SC, Li ZS, Zou ZG. 2009. Photodegradation performance of g-$C_3N_4$ fabricated by directly heating melamine. Langmuir 25: 10397-10401.   DOI
16 Pei P, Zhang K, Wen D. 2012. Comparative analysis of CFD models for jetting fluidized beds: the effect of inter-phase drag force. Powder Technol. 221: 114-122.   DOI
17 Carre G, Hamon E, Ennahar S, Estner M, Lett MC, Horvatovich P, et al. 2014. $TiO_2$ photocatalysis damages lipids and proteins in Escherichia coli. Appl. Environ. Microbiol. 80: 2573-2581.   DOI
18 Lin YJ, Li DQ, Wang G, Huang L, Duan X. 2005. Preparation and bactericidal property of MgO nanoparticles on gamma-$Al_2O_3$. J. Mater. Sci. Mater. Med. 16: 53-56.   DOI
19 Munoz-Batista MJ, Fontelles-Carceller O, Ferrer M, Fernandez-Garcia M, Kubacka A. 2016. Disinfection capability of Ag/g-$C_3N_4$ composite photocatalysts under UV and visible light illumination. Appl. Catal. B Environ. 183: 86-95.   DOI
20 Pant HR, Pant B, Sharma RK, Amarjargal A, Han JK, Chan HP, et al. 2013. Antibacterial and photocatalytic properties of Ag/$TiO_2$/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceram. Int. 39: 1503-1510.   DOI
21 Wang W, Yu Y, An T, Li G, Yip HY, Yu JC, et al. 2012. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism. Environ. Sci. Technol. 46: 4599-4606.   DOI
22 George L, Sappati S, Ghosh P, Devi RN. 2015. Surface site modulations by conjugated organic molecules to enhance visible light activity of ZnO nanostructures in photocatalytic water splitting. J. Phys. Chem. C 119: 3060-3067.   DOI
23 Kim S, Sin H, Lee S, Lee I. 2013. Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J. Microbiol. Biotechnol. 23: 1279-1286.   DOI
24 Lee S, Kim S, Kim S, Lee I. 2012. Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J. Microbiol. Biotechnol. 22: 1264-1270.   DOI
25 Li M, Li G, Fan Y, Jiang J, Ding Q, Dai X, et al. 2014. Effect of nano-ZnO-supported 13X zeolite on photo-oxidation degradation and antimicrobial properties of polypropylene random copolymer. Polym. Bull. 71: 2981-2997.   DOI
26 Seven O, Dindar B, Aydemir S, Metin D, Ozinel MA, Icli S. 2004. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with $TiO_2$, ZnO and Sahara desert dust. J. Photochem. Photobiol. A Chem. 165: 103-107.   DOI
27 Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY. 2010. A review of the mechanisms and modeling of photocatalytic disinfection. Appl. Catal. B Environ. 98: 27-38.   DOI
28 Yu J, Dai G, Huang B. 2009. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/ $TiO_2$ nanotube arrays. J. Phys. Chem. C 113: 16394-16401.   DOI
29 Xia D, Shen Z, Huang G, Wang W, Yu JC, Wong PK. 2015. Red phosphorus: an earth-abundant elemental photocatalyst for "green" bacterial inactivation under visible light. Environ. Sci. Technol. 49: 6264-6273.   DOI
30 Choi J, Park H, Hoffmann MR. 2010. Effects of single metalion doping on the visible-light photoreactivity of $TiO_2$. J. Phys. Chem. C 114: 783-792.   DOI
31 Gao P, Ng K, Sun DD. 2013. Sulfonated graphene oxide- ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light. J. Hazard. Mater. 262: 826-835.   DOI
32 Wang Y, Shi R, Lin J, Zhu Y. 2011. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like $C_3N_4$. Energy Environ. Sci. 4: 2922-2929.   DOI
33 Chen FN, Yang XD, Xu FF, Wu Q, Zhang YP. 2009. Correlation of photocatalytic bactericidal effect and organic matter degradation of $TiO_2$ part i: observation of phenomena. Environ. Sci. Technol. 43: 1180-1184.   DOI
34 Zhang Y, Mori T, Ye J, Antonietti M. 2010. Phosphorusdoped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132: 6294-6295.   DOI
35 Batistela VR, Fogaça LZ, Favaro SL, Caetano W, Hioka N. 2017. ZnO supported on zeolites: photocatalyst design, microporosity and properties. Colloids Surf. A Physicochem. Eng. Asp. 513: 20-27.   DOI
36 Posada Y. 2013. Synthesis of silver nanoclusters on zeolite substrates. Appl. Phys. 105: 126108.
37 Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. 2013. Enhanced photoresponsive ultrathin graphitic-phase $C_3N_4$ nanosheets for bioimaging. J. Am. Chem. Soc. 135: 18-21.   DOI
38 Kong H, Song J, Jang J. 2010. Photocatalytic antibacterial capabilities of $TiO_2$-biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ. Sci. Technol. 44: 5672-5676.   DOI
39 Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV. 2006. Titania and silver-titania composite films on glass - potent antimicrobial coatings. J. Mater. Chem. 17: 95-104.
40 Lin LS, Cong ZX, Li J, Ke KM, Guo SS, Yang HH, et al. 2014. Graphitic-phase $C_3N_4$ nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J. Mater. Chem. B 2: 1031-1037.   DOI
41 Bing W, Chen ZW, Sun HJ, Shi P, Gao N, Ren JS, et al. 2015. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res. 8: 1648-1658.   DOI