• Title/Summary/Keyword: Heterojunction

Search Result 448, Processing Time 0.022 seconds

Fabrication of a-Si:H/c-Si Hetero-Junction Solar Cells by Dual Hot Wire Chemical Vapor Deposition (양면동시증착 열선-CVD를 이용한 a-Si:H/c-Si 이종접합 태양전지 제조)

  • Jeong, Dae-Young;Song, Jun-Yong;Kim, Kyung-Min;Lee, Hi-Deok;Song, Jin-Soo;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.666-672
    • /
    • 2011
  • The a-Si:H/c-Si hetero-junction (HJ) solar cells have a variety of advantages in efficiency and fabrication processes. It has already demonstrated about 23% in R&D scale and more than 20% in commercial production. In order to further reduce the fabrication cost of HJ solar cells, fabrication processes should be simplified more than conventional methods which accompany separate processes of front and rear sides of the cells. In this study, we propose a simultaneous deposition of intrinsic thin a-Si:H layers on both sides of a wafer by dual hot wire CVD (HWVCD). In this system, wafers are located between tantalum wires, and a-Si:H layers are simultaneously deposited on both sides of the wafer. By using this scheme, we can reduce the process steps and time and improve the efficiency of HJ solar cells by removing surface contamination of the wafers. We achieved about 16% efficiency in HJ solar cells incorporating intrinsic a-Si:H buffers by dual HWCVD and p/n layers by PECVD.

Enhanced photo-Fenton degradation of tetracycline using TiO2-coated α-Fe2O3 core-shell heterojunction

  • Zheng, Xiaogang;Fu, Wendi;Kang, Fuyan;Peng, Hao;Wen, Jing
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.14-23
    • /
    • 2018
  • $TiO_2-coated$ cubic ${\alpha}-Fe_2O_3$ with mostly exposed (012) and (101) facets (${\alpha}-Fe_2O_3@TiO_2$) was fabricated using a hydrothermal route for the photo-Fenton degradation of tetracycline under visible light irradiation. $TiO_2$ coating could greatly affect the photocatalytic activity of ${\alpha}-Fe_2O_3@TiO_2$. Compared with cubic ${\alpha}-Fe_2O_3$ alone for photodegradation of tetracycline, ${\alpha}-Fe_2O_3@TiO_2$ with $TiO_2$ shell of around 15 nm exhibited higher removal efficiency of tetracycline in photo-Fenton system, and its durability was slightly affected after five cycle times under same conditions. It is ascribed to the well-matched interface between cubic ${\alpha}-Fe_2O_3$ core and $TiO_2$ shell, leading to the broadened light-absorption and the efficient separation of photo-generated electon-hole pairs. The $^{\bullet}OH$ radicals were main responsible for the advanced photocatalytic performance of ${\alpha}-Fe_2O_3@TiO_2$ in visible-light driven degradation of tetracycline.

A Study of Semiconductor (P)SiC/(N)Si Heterojunction Solar Cells ((P)SiC/(N)Si 이종접합 태양전지에 관한 연구)

  • Jhoun, Choon-Saing;Park, Won-Kyu;Woo, Ho-Whan
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 1991
  • In this study, the (P)SiC/(N)Si solar cell is fabricated by the vacuum evaporation method with the substrate temperature at about $200{\pm}5[5^{\circ}C]$ and its characteristics are investigated. The optimal thickness of $1.2[{\mu}m]$ of SiC film is derived from the relation between film thickness and conversion efficiency. The characteristics of solar cells are improved by the annealing. The optimum annealing temperature and duration are $420[^{\circ}C]$ and 12[min], respectively it is shown that the peak values of spectral response are shifted to the long wavelength region with increasing the annealing temperature. The X-ray diffraction patterns and the scanning electron micrographs show the grain grow thin SiC film as the annealing temperature and time is increased. The best conversion efficiency is 11.7[%] for a $2.5{\times}1[cm^2]$ cell.

  • PDF

Design for Broadband Drive Amplifier of Frequency Split Type using GaAs HBT Process (GaAs HBT 공정을 이용한 주파수 분배 방식의 광대역 구동증폭기 설계)

  • Kim, Minchul;Kim, Junghyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.135-140
    • /
    • 2019
  • In this paper, a frequency split type broadband drive amplifier operating in the L, S and C bands was designed and fabricated. Transistor is difficult to efficiently use when the fractional bandwidth of the drive amplifier is more than 100%, In particular, the characteristics of the driving amplifier are important for operating the power amplifier in which the characteristics of the output power and the efficiency are sensitively changed according to the frequency band. A frequency split methods was applied to maximize the bandwidth of a drive amplifier and to divide the output of the drive amplifier into low band and high band so that the transistor of the power amplifier located at the rear of the drive amplifier can be efficiently used. The designed drive amplifier was fabricated in GaAs HBT technology and 9-layer SiP, and verified by the measurements. The fabricated drive amplifier shows a gain of more than 8 dB and an output power of more than 15 dBm in the operating frequency range.

Synthesis of CdxZn1-xS@MIL-101(Cr) Composite Catalysts for the Photodegradation of Methylene Blue

  • Yang, Shipeng;Peng, Siwei;Zhang, Chunhui;He, Xuwen;Cai, Yaqi
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850118.1-1850118.17
    • /
    • 2018
  • Nanoparticles of the semiconductor catalyst $Cd_xZn_{1-x}S$ were embedded into the metal organic framework MIL-101(Cr) to obtain $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites. These materials not only possess high surface areas and mesopores but also show good utilization of light energy. The ultraviolet-visible diffuse reflectance patterns of $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites showed that $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) possessed good visible light response ability among the synthesized nanocomposites. The photocatalytic performance of the $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites were tested via degradation and mineralization of methylene blue in neutral water solution under light irradiation using a 300W xenon lamp. As a result, using $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) as a catalyst, 99.2% of methylene blue was mineralized within 30 min. Due to the synergistic effect of adsorption by the MIL-101(Cr) component and photocatalytic degradation provided by the $Cd_{0.8}Zn_{0.2}S$ component, the $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) catalyst displayed superior photocatalytic performance relative to $Cd_{0.8}Zn_{0.2}S$ and MIL-101(Cr). Furthermore, $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) possessed excellent stability during photodegradation and exhibited good reusability. The remarkable photocatalytic performance of $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) is likely due to the effective transfer of electrons and holes at the heterojunction interfaces.

High energy swift heavy ion irradiation and annealing effects on DC electrical characteristics of 200 GHz SiGe HBTs

  • Hegde, Vinayakprasanna N.;Praveen, K.C.;Pradeep, T.M.;Pushpa, N.;Cressler, John D.;Tripathi, Ambuj;Asokan, K.;Prakash, A.P. Gnana
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1428-1435
    • /
    • 2019
  • The total ionizing dose (TID) and non ionizing energy loss (NIEL) effects of 100 MeV phosphorous ($P^{7+}$) and 80 MeV nitrogen ($N^{6+}$) ions on 200 GHz silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were examined in the total dose range from 1 to 100 Mrad(Si). The in-situ I-V characteristics like Gummel characteristics, excess base current (${\Delta}I_B$), net oxide trapped charge ($N_{OX}$), current gain ($h_{FE}$), avalanche multiplication (M-1), neutral base recombination (NBR) and output characteristics ($I_C-V_{CE}$) were analysed before and after irradiation. The significant degradation in device parameters was observed after $100MeV\;P^{7+}$ and $80MeV\;N^{6+}$ ion irradiation. The $100MeV\;P^{7+}$ ions create more damage in the SiGe HBT structure and in turn degrade the electrical characteristics of SiGe HBTs more when compared to $80MeV\;N^{6+}$. The SiGe HBTs irradiated up to 100 Mrad of total dose were annealed from $50^{\circ}C$ to $400^{\circ}C$ in different steps for 30 min duration in order to study the recovery of electrical characteristics. The recovery factors (RFs) are employed to analyse the contribution of room temperature and isochronal annealing in total recovery.

A Brief Investigation on the Performance Variation and Shelf Lifetime in Polymer:Nonfullerene Solar Cells

  • Lee, Sooyong;Kim, Hwajeong;Lee, Chulyeon;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.55-60
    • /
    • 2019
  • Polymer:nonfullerene solar cells with an inverted-type device structure were fabricated by employing the bulk heterojunction (BHJ) active layers, which are composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). The BHJ layers were formed on a pre-patterned indium-tin oxide (ITO)-coated glass substrate by spin-coating using the blend solutions of PBDB-T and IT-M. The solar cell performances were investigated with respect to the cell position on the ITO-glass substrates. In addition, the short-term shelf lifetime of solar cells was tested by storing the PBDB-T:IT-M solar cells in a glovebox filled with inert gas. The results showed that the performance of solar cells was relatively higher for the cells close to the center of substrates, which was maintained even after storage for 24 h. In particular, the PCE of PBDB-T:IT-M solar cells was marginally decreased after storage for 24 h owing to the slightly reduced fill factor, even though the open circuit voltage was unchanged after 24 h.

Hole Selective Contacts: A Brief Overview

  • Sanyal, Simpy;Dutta, Subhajit;Ju, Minkyu;Mallem, Kumar;Panchanan, Swagata;Cho, Eun-chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Carrier selective solar cell structure has allured curiosity of photovoltaic researchers due to the use of wide band gap transition metal oxide (TMO). Distinctive p/n-type character, broad range of work functions (2 to 7 eV) and risk free fabrication of TMO has evolved new concept of heterojunction intrinsic thin layer (HIT) solar cell employing carrier selective layers such as $MoO_x$, $WO_x$, $V_2O_5$ and $TiO_2$ replacing the doped a-Si layers on either front side or back side. The p/n-doped hydrogenated amorphous silicon (a-Si:H) layers are deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD), which includes the flammable and toxic boron/phosphorous gas precursors. Due to this, carrier selective TMO is gaining popularity as analternative risk-free material in place of conventional a-Si:H. In this work hole selective materials such as $MoO_x$, $WO_x$ and $V_2O_5$has been investigated. Recently $MoO_x$, $WO_x$ & $V_2O_5$ hetero-structures showed conversion efficiency of 22.5%, 12.6% & 15.7% respectively at temperature below $200^{\circ}C$. In this work a concise review on few important aspects of the hole selective material solar cell such as historical developments, device structure, fabrication, factors effecting cell performance and dependency on temperature has been reported.

Study on the Photocatalytic Characteristic and Activity of Cu2O/TiO2 Heterojunction Prepared by Ultrasonification (초음파 합성 적용 Cu2O/TiO2 이종접합 소재의 특성 및 활성도 평가에 관한 연구)

  • Choi, Jeong-Hak;Lee, Joon Yeob
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1213-1222
    • /
    • 2020
  • In the current study, a Cu2O/TiO2 photoinduced nanocomposite materials prepared by ultrasonification method was evaluated the photocatalytic oxidation efficiency of volatile organic compounds (BTEX) under visible-light irradiation. The results of XRD confirmed the successful preparation of photoinduced nanocomposite materials. However, diffraction peaks belonging to TiO2 were not confirmed for the Cu2O/TiO2. The possible reason for the absence of Cu2O peak is their low content and small particle size. The result of uv-vis spectra exhibited that the fabricated Cu2O/TiO2 can be activated under visible light irradiation. The FE-SEM/EDS and TEM showed the formation of synthesized nanocomposites and componential analysis in the undoped TiO2 and Cu2O/TiO2. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with Cu2O/TiO2 were higher than undoped TiO2. According to light sources, the average oxidation efficiencies for BTEX by Cu2OT-0.5 were exhibited in the orer of 8 W day light > violet LEDs > white LEDs. However, the photocatalytic oxidation efficiencies normalized to supplied electric power were calculated to be in the following order of violet LEDs > white LEDs > 8 W day light, indicating that the LEDs could be a much more energy efficient light source for the photo-oxidation of gaseous BTEX using Cu2O/TiO2.

Structure and magnetic properties of CrN thin films on La0.67Sr0.33MnO3

  • Zhang, Dingbo;Zhou, Zhongpo;Wang, Haiying;Wang, Tianxing;Lu, Zhansheng;Yang, Zongxian;Ai, Zhiwei;Wu, Hao;Liu, Chang
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1320-1326
    • /
    • 2018
  • High crystalline quality CrN thin films have been grown on $La_{0.67}Sr_{0.33}MnO_3$ (LSMO) templates by molecular beam epitaxy. The structure and magnetic properties of CrN/LSMO heterojunctions are investigated combining with the experiments and the first-principles simulation. The N?el temperature of the CrN/LSMO samples is found to be 281 K and the saturation magnetization of CrN/LSMO increases compared to that of LSMO templates. The magnetic property of CrN/LSMO heterostructures mainly comes from Cr atoms of (001) CrN and Mn atoms of (001) LSMO. The (001) LSMO induces and couples the spin of the CrN sublattice at CrN/LSMO interface.