DOI QR코드

DOI QR Code

Enhanced photo-Fenton degradation of tetracycline using TiO2-coated α-Fe2O3 core-shell heterojunction

  • Zheng, Xiaogang (College of Chemistry and Chemical Engineering, Neijiang Normal University) ;
  • Fu, Wendi (College of Chemistry and Chemical Engineering, Neijiang Normal University) ;
  • Kang, Fuyan (College of Chemistry and Chemical Engineering, Neijiang Normal University) ;
  • Peng, Hao (College of Chemistry and Chemical Engineering, Yangtz Normal University) ;
  • Wen, Jing (Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences)
  • Received : 2018.05.30
  • Accepted : 2018.07.19
  • Published : 2018.12.25

Abstract

$TiO_2-coated$ cubic ${\alpha}-Fe_2O_3$ with mostly exposed (012) and (101) facets (${\alpha}-Fe_2O_3@TiO_2$) was fabricated using a hydrothermal route for the photo-Fenton degradation of tetracycline under visible light irradiation. $TiO_2$ coating could greatly affect the photocatalytic activity of ${\alpha}-Fe_2O_3@TiO_2$. Compared with cubic ${\alpha}-Fe_2O_3$ alone for photodegradation of tetracycline, ${\alpha}-Fe_2O_3@TiO_2$ with $TiO_2$ shell of around 15 nm exhibited higher removal efficiency of tetracycline in photo-Fenton system, and its durability was slightly affected after five cycle times under same conditions. It is ascribed to the well-matched interface between cubic ${\alpha}-Fe_2O_3$ core and $TiO_2$ shell, leading to the broadened light-absorption and the efficient separation of photo-generated electon-hole pairs. The $^{\bullet}OH$ radicals were main responsible for the advanced photocatalytic performance of ${\alpha}-Fe_2O_3@TiO_2$ in visible-light driven degradation of tetracycline.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. R. Daghrir, P. Drogui, Environ. Chem. Lett. 11 (2013) 209. https://doi.org/10.1007/s10311-013-0404-8
  2. Z. Li, L. Zhu, W. Wu, S. Wang, L. Qiang, Appl. Catal. B: Environ. 192 (2016) 277. https://doi.org/10.1016/j.apcatb.2016.03.045
  3. H. Xiong, D. Zou, D. Zhou, S. Dong, J. Wang, B. Rittmann, Chem. Eng. J. 316 (2017) 7. https://doi.org/10.1016/j.cej.2017.01.083
  4. T.H. Yu, A.Y.C. Lin, S.C. Panchangam, P.K.A. Hong, P.Y. Yang, C.F. Lin, Chemosphere 84 (2011) 1216. https://doi.org/10.1016/j.chemosphere.2011.05.045
  5. S.F. Yang, C.F. Lin, A.Y.C. Lin, P.K.A. Hong, Water Res. 45 (2011) 3389. https://doi.org/10.1016/j.watres.2011.03.052
  6. L. Bing, Z. Tong, Environ. Sci. Technol. 44 (2010) 3468. https://doi.org/10.1021/es903490h
  7. P. Gao, D. Mao, Y. Luo, L. Wang, B. Xu, L. Xu, Water Res. 46 (2012) 2355. https://doi.org/10.1016/j.watres.2012.02.004
  8. N. Oturan, J. Wub, H. Zhang, V.K. Sharma, M.A. Oturana, Appl. Catal. B: Environ. 141 (2013) 92.
  9. A. Ledjeri, I. Yahiaoui, F. Aissani-Benissad, J. Enviorn. Manag. 184 (2016) 249. https://doi.org/10.1016/j.jenvman.2016.09.086
  10. J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Chemosphere 78 (2010) 533. https://doi.org/10.1016/j.chemosphere.2009.11.024
  11. W. Shi, F. Guo, H. Wang, M. Han, H. Li, S. Yuan, H. Huang, Y. Liu, Z. Kang, Appl. Catal. B: Environ. 219 (2017) 36. https://doi.org/10.1016/j.apcatb.2017.07.019
  12. W. Wang, J. Fang, S. Shao, M. Lai, C. Lu, Appl. Catal. B: Environ. 217 (2017) 57. https://doi.org/10.1016/j.apcatb.2017.05.037
  13. J. Xu, J. Gao, Y. Liu, Q. Li, L. Wang, Mater. Res. Bull. 91 (2017) 1. https://doi.org/10.1016/j.materresbull.2017.03.018
  14. S. Panneri, M. Thomas, P. Ganguly, B.N. Nair, A.P. Mohamed, K.G.K. Warrier, U.S. Hareesh, Catal. Sci. Technol. 7 (2017) 2118. https://doi.org/10.1039/C7CY00348J
  15. X. Wang, J. Jia, Y. Wang, Chem. Eng. J. 315 (2017) 274. https://doi.org/10.1016/j.cej.2017.01.011
  16. W. Shi, H. Lv, S. Yuan, H. Huang, Y. Liu, Z. Kang, Sep. Purif. Technol. 174 (2017) 75. https://doi.org/10.1016/j.seppur.2016.10.005
  17. M. Liu, L. Hou, B. Xi, Q. Li, X. Hu, S. Yu, Chem. Eng. J. 302 (2016) 475. https://doi.org/10.1016/j.cej.2016.05.083
  18. X. Liu, K. Chen, J.J. Shim, J. Huang, J. Saudi Chem. Soc. 19 (2015) 479. https://doi.org/10.1016/j.jscs.2015.06.009
  19. H. Liu, Z. Zhang, X. Wang, G. Nie, J. Zhang, S. Zhang, N. Cao, S. Yan, Y. Long, J. Phys. Chem. Solids 121 (2018) 236. https://doi.org/10.1016/j.jpcs.2018.05.019
  20. S. Sun, M. Sun, Y. Kong, Y. Fang, Y. Yao, Sci. Technol. 80 (2016) 719.
  21. N. Abbas, G.N. Shao, M.S. Haider, S.M. Imran, S.S. Park, H.T. Kim, J. Ind. Eng. Chem. 39 (2016) 112. https://doi.org/10.1016/j.jiec.2016.05.015
  22. J. Wang, J. Ren, H. Yao, L. Zhang, J. Wang, S. Zang, L. Han, Z. Li, J. Hazard. Mater. 311 (2016) 11. https://doi.org/10.1016/j.jhazmat.2016.02.055
  23. J. Gao, R. Jiang, J. Wang, B. Wang, K. Li, P. Kang, Y. Li, X. Zhang, Chem. Eng. J. 168 (2011) 1041. https://doi.org/10.1016/j.cej.2011.01.079
  24. M. Nasirian, C.F. Bustillo-Lecompte, M. Mehrvar, J. Enviorn. Manage. 196 (2017) 487. https://doi.org/10.1016/j.jenvman.2017.03.030
  25. N. Davari, M. Farhadian, A.R.S. Nazar, M. Homayoonfal, J. Environ. Chem. Eng. 5 (2017) 5707. https://doi.org/10.1016/j.jece.2017.10.052
  26. J. Zhang, P. Qi, J. Li, X. Zheng, P. Liu, X. Guan, G. Zheng, J. Ind. Eng. Chem. 61 (2018) 407. https://doi.org/10.1016/j.jiec.2017.12.040
  27. G. Iervolino, V. Vaiano, D. Sannino, L. Rizzo, A. Galluzzi, M. Polichetti, G. Pepe, P. Campiglia, Int. J. Hydrogen Energy 43 (2018) 2184. https://doi.org/10.1016/j.ijhydene.2017.12.071
  28. X. Zhang, Y. Xie, H. Chen, J. Guo, A. Meng, C. Li, Appl. Surf. Sci. 317 (2014) 43. https://doi.org/10.1016/j.apsusc.2014.08.099
  29. B. Sun, W. Zhou, H. Li, L. Ren, P. Qiao, F. Xiao, L. Wang, B. Jiang, H. Fu, Appl. Catal. B: Enviorn. 221 (2018) 235. https://doi.org/10.1016/j.apcatb.2017.09.023
  30. M.M. Mohamed, W.A. Bayoumy, M.E. Goher, M.H. Abdo, T.Y.M. Ei-Ashkar, Appl. Surf. Sic. 412 (2017) 668. https://doi.org/10.1016/j.apsusc.2017.03.200
  31. Q. Zeng, X. Xie, X. Wang, Y. Wang, G. Lu, D.Y.H. Pui, J. Sun, Chem. Eng. J. 341 (2018) 83. https://doi.org/10.1016/j.cej.2018.02.015
  32. S. Kim, J. Woo, S. Kang, B.K. Min, J.K. Lee, S. Lee, J. Ind. Eng. Chem. 43 (2016) 142. https://doi.org/10.1016/j.jiec.2016.07.060
  33. X. Yu, S. Liu, J. Yu, Appl. Catal. B: Environ. 104 (2011) 12. https://doi.org/10.1016/j.apcatb.2011.03.008
  34. M.T. Qamar, M. Aslam, I.M.I. Ismail, N. Salah, A. Hameed, Chem. Eng. J. 283 (2016) 656. https://doi.org/10.1016/j.cej.2015.08.002
  35. Z.Y. Lin, P. Liu, J.H. Yan, G.W. Yang, J. Mater. Chem. A 3 (2015) 14853. https://doi.org/10.1039/C5TA02958A
  36. A.M. Abdel-Wahab, A.S. Al-Shirbini, O. Mohamed, O. Nasr, J. Photochem. Photobiol. A 347 (2017) 186. https://doi.org/10.1016/j.jphotochem.2017.07.030
  37. J. Liu, S. Yang, W. Wu, Q. Tian, S. Cui, Z. Dai, F. Ren, X. Xiao, C. Jiang, ACS Sustain. Chem. Eng. 3 (2015) 2975. https://doi.org/10.1021/acssuschemeng.5b00956
  38. M. Chen, X. Shen, Q.H. Wu, W. Li, G.W. Diao, J. Mater. Sci. 50 (2015) 4083. https://doi.org/10.1007/s10853-015-8964-6
  39. S.R. Mirmasoomi, M.M. Ghazi, M. Galedari, Sep. Purif. Technol. 175 (2017) 418. https://doi.org/10.1016/j.seppur.2016.11.021
  40. C. Pojanavaraphan, U. Satitthai, A. Luengnaruemitchai, E. Gulari, J. Ind. Eng. Chem. 22 (2015) 41. https://doi.org/10.1016/j.jiec.2014.06.023
  41. X. Zheng, M. Huang, Y. You, H. Peng, J. Wen, Mater. Res. Bull. 101 (2018) 20. https://doi.org/10.1016/j.materresbull.2018.01.007
  42. J. Li, Z. Liu, D. Wang, Z. Zhu, Mater. Sci. Semicond. Process 27 (2014) 950. https://doi.org/10.1016/j.mssp.2014.08.038
  43. Y. Li, K. Wang, J. Wu, L. Gu, Z. Lu, X. Wang, X. Cao, RSC Adv. 5 (2015) 88277. https://doi.org/10.1039/C5RA17765K
  44. Q. Zhang, G. Rao, J. Rogers, C. Zhao, L. Liu, Y. Li, Chem. Eng. J. 271 (2015) 180. https://doi.org/10.1016/j.cej.2015.02.085
  45. Q. Lu, M. Wei, C. Wang, J. Alloys Compd. 646 (2015) 417. https://doi.org/10.1016/j.jallcom.2015.05.191
  46. K. Mondal, A. Sharma, RSC Adv. 6 (2016) 83589. https://doi.org/10.1039/C6RA18102C
  47. C. Ray, T. Pal, J. Mater. Chem. A 5 (2017) 9465. https://doi.org/10.1039/C7TA02116J
  48. J. Wang, C. Qin, H. Wang, M. Chu, A. Zada, X. Zhang, J. Li, F. Raziq, Y. Qu, L. Jing, Appl. Catal. B: Environ. 221 (2018) 459. https://doi.org/10.1016/j.apcatb.2017.09.042
  49. Y. Wang, Y. Li, X. Wang, Y. Hou, A. Chen, H. Yang, Appl. Catal. B: Environ. 206 (2017) 216. https://doi.org/10.1016/j.apcatb.2016.11.028
  50. H. Liang, W. Chen, R. Wang, Z. Qi, J. Mi, Z. Wang, Chem. Eng. J. 274 (2015) 224. https://doi.org/10.1016/j.cej.2015.03.125
  51. P. Shao, Z. Ren, J. Tian, S. Gao, X. Luo, W. Shi, B. Yan, J. Li, F. Cui, Chem. Eng. J. 323 (2017) 64. https://doi.org/10.1016/j.cej.2017.04.069
  52. Q. Du, Q. Gao, Mater. Technol. 32 (2017) 724. https://doi.org/10.1080/10667857.2017.1346770
  53. D.M.B. Lesko, E.M. Coddens, H.D. Swomley, R.M. Welch, J. Brogatta, J.G. Navea, Phys. Chem. Chem. Phys. 17 (2015) 20775. https://doi.org/10.1039/C5CP02903A
  54. C. Jia, P. Yang, J. Li, B. Huang, K. Matras-Postolek, ChemCatChem 8 (2016) 839. https://doi.org/10.1002/cctc.201501045
  55. N.M. Abdul Rashid, C.Y. Haw, W.S. Chiu, N.H. Khanis, A. Rohaizad, S. Abdul Rahman, P.S. Khiew, Cryst. Eng. Comm. 18 (2016) 4720. https://doi.org/10.1039/C6CE00573J
  56. X. Zheng, W. Fu, H. Peng, J. Wen, J. Environ. Chem. Eng. 6 (2018) 9. https://doi.org/10.1016/j.jece.2017.11.070
  57. D.P. Ojha, H.P. Karki, H.J. Kim, J. Ind. Eng. Chem. 61 (2018) 87. https://doi.org/10.1016/j.jiec.2017.12.004
  58. Y. Liu, Y. Song, Y. You, X. Fu, J. Wen, X. Zheng, J. Saudi Chem. Soc. 22 (2018) 439. https://doi.org/10.1016/j.jscs.2017.08.002
  59. X. Zheng, S. Huang, D. Yang, H. Zhai, Y. You, X. Fu, J. Yuan, X. Zhou, J. Wen, Y. Liu, J. Alloys Compd. 705 (2017) 131. https://doi.org/10.1016/j.jallcom.2017.02.110
  60. L. Wu, H. Yan, J. Xiao, X. Li, X. Wang, T. Zhao, Ceram. Int. 43 (2017) 14334. https://doi.org/10.1016/j.ceramint.2017.07.189
  61. R. Ahmad, J.K. Kim, J.H. Kim, J. Kim, J. Ind. Eng. Chem. 57 (2018) 55. https://doi.org/10.1016/j.jiec.2017.08.007
  62. J. Park, J. Ind. Eng. Chem. 51 (2017) 27. https://doi.org/10.1016/j.jiec.2017.03.022
  63. G. Cheng, F. Xu, J. Xiong, Y. Wei, F.J. Stadler, R. Chen, Adv. Powder Technol. 28 (2017) 665. https://doi.org/10.1016/j.apt.2016.12.004
  64. E.B. Simsek, B. Kilic, M. Asgin, A. Akan, J. Ind. Eng. Chem. 59 (2018) 115. https://doi.org/10.1016/j.jiec.2017.10.014
  65. L.A. Constantin, I. Nitoi, N.I. Cristea, M.A. Constantin, J. Ind. Eng. Chem. 25 (2018) 155.
  66. C. Jia, H. Chen, P. Yang, J. Ind. Eng. Chem. 58 (2018) 278. https://doi.org/10.1016/j.jiec.2017.09.037
  67. D. Wu, J. Li, J. Guan, C. Liu, X. Zhao, Z. Zhu, C. Ma, P. Huo, C. Li, Y. Yan, J. Ind. Eng. Chem. 64 (2018) 206. https://doi.org/10.1016/j.jiec.2018.03.017
  68. A.N. Kadam, D.P. Bhopate, V.V. Kondalkar, S.M. Majhi, C.D. Bathula, A. Tran, S. Lee, J. Ind. Eng. Chem. 61 (2018) 78. https://doi.org/10.1016/j.jiec.2017.12.003
  69. X. Zheng, M. Huang, Y. You, X. Fu, Y. Liu, J. Wen, Chem. Eng. J. 334 (2018) 1399. https://doi.org/10.1016/j.cej.2017.10.156
  70. L. Tan, X. Ke, X. Song, Q. Yin, R. Qiao, K. Guo, L. Zhu, J. Ind. Eng. Chem. 60 (2018) 206. https://doi.org/10.1016/j.jiec.2017.11.008

Cited by

  1. CuInS2/Mg(OH)2 Nanosheets for the Enhanced Visible-Light Photocatalytic Degradation of Tetracycline vol.9, pp.11, 2018, https://doi.org/10.3390/nano9111567
  2. Enhanced Visible-Light Photocatalytic Activity of Ag QDs Anchored on CeO2 Nanosheets with a Carbon Coating vol.9, pp.11, 2018, https://doi.org/10.3390/nano9111643
  3. N-Doped Carbon-Coated ZnS with Sulfur-Vacancy Defect for Enhanced Photocatalytic Activity in the Visible Light Region vol.9, pp.12, 2018, https://doi.org/10.3390/nano9121657
  4. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide vol.1200, pp.None, 2018, https://doi.org/10.1016/j.molstruc.2019.127115
  5. 나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성 vol.31, pp.1, 2018, https://doi.org/10.14478/ace.2019.1105
  6. Recent Achievements in Development of TiO 2 -Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting vol.13, pp.6, 2018, https://doi.org/10.3390/ma13061338
  7. Application and mechanism of ferrihydrite in the EDDS improved heterogeneous photo-Fenton system: the role of different reactive species under different conditions vol.44, pp.18, 2018, https://doi.org/10.1039/d0nj00628a
  8. Enhanced photocatalysis of MgAl layered double oxide nanosheets with B,N-codoped carbon coating for tetracycline removal vol.193, pp.None, 2018, https://doi.org/10.1016/j.clay.2020.105694
  9. Nanostructured semiconductor supported iron catalysts for heterogeneous photo-Fenton oxidation: a review vol.8, pp.31, 2018, https://doi.org/10.1039/d0ta04541a
  10. Flower-like hierarchical ZnS-Ga2S3 heterojunction for the adsorption-photo-reduction of Cr(VI) vol.261, pp.None, 2018, https://doi.org/10.1016/j.chemosphere.2020.127824
  11. Study of TiO2-Coated α-Fe2O3 Composites and the Oxygen-Defects Effect on the Application as the Anode Materials of High-Performance Li-Ion Batteries vol.3, pp.12, 2018, https://doi.org/10.1021/acsaem.0c01661
  12. Antibiotics Contaminated Irrigation Water: An Overview on Its Impact on Edible Crops and Visible Light Active Titania as Potential Photocatalysts for Irrigation Water Treatment vol.9, pp.None, 2018, https://doi.org/10.3389/fenvs.2021.767963
  13. Synergistic effect of multiple-phase rGO/CuO/Cu2O heterostructures for boosting photocatalytic activity and durability vol.544, pp.None, 2021, https://doi.org/10.1016/j.apsusc.2020.148607
  14. Preparation of titanium dioxide modified biomass polymer microspheres for photocatalytic degradation of rhodamine-B dye and tetracycline vol.122, pp.None, 2018, https://doi.org/10.1016/j.jtice.2021.04.040
  15. Fabrication of a direct Z-scheme heterojunction between MoS2 and B/Eu-g-C3N4 for an enhanced photocatalytic performance toward tetracycline degradation vol.867, pp.None, 2018, https://doi.org/10.1016/j.jallcom.2021.159044
  16. Flower-like Bi2S3-In2S3 heterojunction for efficient solar light induced photoreduction of Cr(VI) vol.278, pp.None, 2018, https://doi.org/10.1016/j.chemosphere.2021.130422
  17. Facile Fabrication of Three-Dimensional Fusiform-Like α-Fe2O3 for Enhanced Photocatalytic Performance vol.11, pp.10, 2021, https://doi.org/10.3390/nano11102650
  18. Characteristics and mechanism of electrochemical peroxymonosulfate activation by a Co-N@CF anode for pollutant removal vol.8, pp.1, 2021, https://doi.org/10.1039/d1ew00676b