Browse > Article
http://dx.doi.org/10.21218/CPR.2019.7.1.009

Hole Selective Contacts: A Brief Overview  

Sanyal, Simpy (College of Information and Communication Engineering, Sungkyunkwan University)
Dutta, Subhajit (College of Information and Communication Engineering, Sungkyunkwan University)
Ju, Minkyu (College of Information and Communication Engineering, Sungkyunkwan University)
Mallem, Kumar (College of Information and Communication Engineering, Sungkyunkwan University)
Panchanan, Swagata (College of Information and Communication Engineering, Sungkyunkwan University)
Cho, Eun-chel (College of Information and Communication Engineering, Sungkyunkwan University)
Cho, Young Hyun (College of Information and Communication Engineering, Sungkyunkwan University)
Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Current Photovoltaic Research / v.7, no.1, 2019 , pp. 9-14 More about this Journal
Abstract
Carrier selective solar cell structure has allured curiosity of photovoltaic researchers due to the use of wide band gap transition metal oxide (TMO). Distinctive p/n-type character, broad range of work functions (2 to 7 eV) and risk free fabrication of TMO has evolved new concept of heterojunction intrinsic thin layer (HIT) solar cell employing carrier selective layers such as $MoO_x$, $WO_x$, $V_2O_5$ and $TiO_2$ replacing the doped a-Si layers on either front side or back side. The p/n-doped hydrogenated amorphous silicon (a-Si:H) layers are deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD), which includes the flammable and toxic boron/phosphorous gas precursors. Due to this, carrier selective TMO is gaining popularity as analternative risk-free material in place of conventional a-Si:H. In this work hole selective materials such as $MoO_x$, $WO_x$ and $V_2O_5$has been investigated. Recently $MoO_x$, $WO_x$ & $V_2O_5$ hetero-structures showed conversion efficiency of 22.5%, 12.6% & 15.7% respectively at temperature below $200^{\circ}C$. In this work a concise review on few important aspects of the hole selective material solar cell such as historical developments, device structure, fabrication, factors effecting cell performance and dependency on temperature has been reported.
Keywords
HIT; Carrier selective solar cells; Hole selective solar cells; Back surface field and transition metal oxides;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Bivour, J. Temmler, H. Steinkemper, M. Hermle, "Molybdenum and tungsten oxide: High work function wide bandgap contact materials for hole selective contacts of silicon solar cells," Solar Energy Materials & Solar Cells, pp-34-41, 2015.
2 J. Bullock, A. Cuevas, T. Allen, C. Battaglia, "Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells," Applied Physics Letters, Vol. 105, 232109, 2014.   DOI
3 J. Bullock, D.Yan, A. Cuevas, Y. Wan, C. Samundsett, "n- and p-type silicon solar cells with molybdenum oxide hole contacts," Energy Procedia, Vol. 77, pp. 446-450, 2015.   DOI
4 C. Messmer, M. Bivour, J. Schon, S. W. Glunz, M. Hermle, "Numerical Simulation of Silicon Heterojunction Solar Cells Featuring Metal Oxides as Carrier-Selective Contacts," IEEE Journal of Photovoltaics 1, 2156-3381, 2018.
5 R. M. Swanson, "Approaching the 29% limit efficiency of silicon solar cells," in Proc. 31st IEEE Photovolt. Spec. Conf. Lake Buena Vista, Lake Buena Vista, FL, USA, 2005, pp. 889-894
6 P. Wurfel, U. Wurfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts, 3rd ed. Weinheim, Germany: Wiley, 2016
7 L. G. Gerling, S. Mahato, A. Morales-Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, J. Puigdollers, "Transition metal oxides as hole-selective contacts insilicon Heterojunctions solar cells," Sol. Energy Mater. Sol. Cells, Vol. 145, pp. 109-115, 2016.   DOI
8 M. Bivour, J. Temmler, H. Steinkemper, M. Hermle, "Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells," Sol. Energy Mater. Sol. Cells, Vol. 142, pp. 34-41, 2015.   DOI
9 J. Bullock, Y. Wan, M. Hettick, J. Geissbuhler, A. J. Ong, D. Kiriya, D. Yan, "Survey of dopant-free carrier-selective contacts for silicon solar cells," in Proc. 2016 IEEE 43rd Photovolt. Spec. Conf., pp. 210-214, 2016.
10 M. Bivour, C. Messmer, L. Neusel, F. Zahringer, J. Schon, "Principles of carrier-selective contacts based on induced junctions," in Proc. 33rd Eur. PV Solar Energy Conf. Exhib., Amsterdam, The Netherlands, Sep. 25-29, pp. 348-352, 2017.
11 L. Neusel, M. Bivour, M. Hermle, "Selectivity issues of MoOx basedhole contacts," Energy Procedia, Vol. 124, pp. 425-434, 2017.   DOI
12 M. Bivour, F. Zahringer, P. Ndione, M. Hermle, "Sputter-deposited WOx and MoOx for hole selective contacts," Energy Procedia, Vol. 124, pp. 400-405, 2017.   DOI
13 H. Mehmood, H. Nasser et al., "Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrierselective contact," Wiley Energy Research, 2017.
14 E. Centurioni, D. Iencinella, R. Rizzoli, F. Zignani, Silicon Heterojunction Solar Cell: A New Buffer Layer Concept With Low-Temperature Epitaxial Silicon. IEEE Trans. Elec. Dev. Vol. 51, pp. 1818-1824, 2004.   DOI
15 S. D. Wolf, M. Kondo, "Abruptness of a-Si:H/c-Si interface revealed by carrier lifetime measurements," Appl. Phys. Letts., Vol. 90, 042111, 2007.   DOI
16 Fujiwara H., Kondo M., "Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells," Appl. Phys. Letts., Vol. 90, 013503, 2007.   DOI
17 H. Fujiwara, M. Kondo, "Effects of a-Si:H layer thicknesses on the performance of a-Si:H/c-Si Heterojunction solar cells," J. Appl. Phys., Vol. 101, 054516, 2007.   DOI
18 J. Damon-Lacoste, P. R. Cabarrocas, P. Chatterjee, Y. Veschetti, A. S. Gudovskikh, J. P. Kleider, P. J. Ribeyron, "About the efficiency limits of Heterojunction solar cells," J. of Non-Cryst. Solids, Vol. 352, pp. 1928-1932, 2006.   DOI
19 F. Einsele, P. J. Rostan, M. B. Schubert, U. Rau, "Recombination and resistive losses at ZnO/a-Si:H/c-Si interfaces in Heterojunction back contacts for Si solar cells," J. Appl. Phys. Vol. 102, 094507, 2007.   DOI
20 N. Jensen, U. Rau, R. M. Hausner, S. Uppal, L. Oberbeck, R. B. Bergmann, J. H. Werner, "Recombination mechanisms in amorphous silicon/crystalline silicon Heterojunction solar cells," J. Appl. Phys., Vol. 87, pp. 2639-2645, 2000.   DOI
21 T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, "Development status of high-efficiency HIT solar cells," Solar Energy Materials & Solar Cells, Vol. 95, pp. 18-21, 2011.   DOI
22 A. Kanevce, W. K. Metzger, "The role of amorphous silicon and tunneling in Heterojunction with intrinsic thin layer HIT solarcells," J. Appl. Phys., Vol. 105, 094507, 2009.   DOI
23 M. Schmidt, L. Korte, A. Laades, R. Stangl, C. Schubert, H. Angermann, E. Conrad, K. V. Maydell, "Physical aspects of a-Si:H/c-Si hetero-junction solar cells," Thin Solid Films, Vol. 515, pp. 7475-7480, 2007.   DOI
24 T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, "Development status of high-efficiency HIT solar cells," Solar Energy Materials & Solar Cells. Vol. 95, pp. 18-21, 2011.   DOI
25 J. Geissbuhler, J. Werner, S. M. de Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif, "22.5% efficient silicon Heterojunction solar cell with molybdenum oxide hole collector," Applied Physics Letters, Vol. 107, 081601, 2015.   DOI
26 C. Battaglia, S. M. de Nicolas, S. De Wolf, X. Yin, M. Zheng, C. Ballif, A. Javey, "Silicon Heterojunction solar cell with passivated hole selective MoOx contact," Applied Physics Letters, Vol. 104, 2014.
27 M. L. Yu, Y. L. Hsieh , S. K. Jou, T. T. Li, C. C. Lee, "Investigation of intrinsic hydrogenated amorphous silicon (a-si:H) thin films on textured silicon substrate with high quality passivation," IEEE China semiconductor technology international conference (CSTIC), 2017.
28 M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, "Development of New a-Si/c-SiHeterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)," Jpn. J. Appl. Phys., Vol. 31, pp. 3518-3522, 1992.   DOI
29 K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, "More than16% solar cells with a new 'HIT' (doped a-Si/nondoped a-Si/crystalline Si) structure," Photovoltaic Specialists Conference, pp. 887-892, 1991.
30 M. Tanaka, S. Okamoto, S. Tsuge, S. Kiyama, "Development of HIT solar cells with more than 21% conversion efficiency and commercialization of highest performance HIT modules," 3rd World Conference on Photovoltaic Energy Conversion (Osaka. Japan), 40-DIO-01, pp. 955-958, 2003.
31 T. Sawada, N. Terada, T. Sadaji, T. Baba, T. Takahama, W. Kenichiro, T. Shinya, N. Shoichi, High-efficiency a-Si/c-Si Heterojunction solar cell. 1st World Conference on Photovoltaic Energy Conversion (Hawaii), pp. 1219-1226, 1994.
32 B. Jagannathan, W. A. Anderson, J. Coleman, "Amorphous silicon/p-type crystalline silicon Heterojunction solar cells," Solar Energy Materials and Solar Cells, Vol. 46, pp. 289-310, 1997.   DOI
33 M. W. V. Cleef, F. A. Rubinelli, R. Rizzoli, R. Pinghini, R. E. I. Schropp, W. F. V. D. Weg, "Amorphous Silicon Carbide/ Crystalline Silicon Heterojunction Solar Cells, A Comprehensive Study of the Photocarrier Collection," Jpn. J. Appl. Phys., Vol. 37, pp. 3926-3932, 1998.   DOI
34 S. M. Iftiquar, Y. S. Lee, V. A. Dao, S. H. Kim and J. S. Yi, "High efficiency Heterojunction with intrinsic thin layer solar cell: A short review," Materials and processes for energy and processes for energy: communicating current research and technological developments, pp. 59-65, 2013.
35 Y. Xu, Z. Hu, H. Diao, Y. Cai, S. Zhang, X. Zeng, H. Hao, X. Liao, E. Fortunato, R. Martins, "Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers," J. Non-Cryst. Solids, Vol. 352, pp. 1972-1975, 2006.   DOI
36 Y. J. Song, "Anderson W A, Amorphous silicon/p-type crystalline silicon Heterojunction solar cells with a microcrystalline silicon buffer layer," Solar Energy Mat. Sol. Cells, Vol. 64, pp. 241-249, 2000.   DOI