DOI QR코드

DOI QR Code

Synthesis of CdxZn1-xS@MIL-101(Cr) Composite Catalysts for the Photodegradation of Methylene Blue

  • Yang, Shipeng (School of Chemistry and Environmental Engineering China University of Mining and Technology) ;
  • Peng, Siwei (School of Chemistry and Environmental Engineering China University of Mining and Technology) ;
  • Zhang, Chunhui (School of Chemistry and Environmental Engineering China University of Mining and Technology) ;
  • He, Xuwen (School of Chemistry and Environmental Engineering China University of Mining and Technology) ;
  • Cai, Yaqi (Research Center for Eco-Environmental Sciences Chinese Academy of Sciences)
  • Received : 2018.05.17
  • Accepted : 2018.09.06
  • Published : 2018.10.31

Abstract

Nanoparticles of the semiconductor catalyst $Cd_xZn_{1-x}S$ were embedded into the metal organic framework MIL-101(Cr) to obtain $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites. These materials not only possess high surface areas and mesopores but also show good utilization of light energy. The ultraviolet-visible diffuse reflectance patterns of $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites showed that $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) possessed good visible light response ability among the synthesized nanocomposites. The photocatalytic performance of the $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites were tested via degradation and mineralization of methylene blue in neutral water solution under light irradiation using a 300W xenon lamp. As a result, using $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) as a catalyst, 99.2% of methylene blue was mineralized within 30 min. Due to the synergistic effect of adsorption by the MIL-101(Cr) component and photocatalytic degradation provided by the $Cd_{0.8}Zn_{0.2}S$ component, the $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) catalyst displayed superior photocatalytic performance relative to $Cd_{0.8}Zn_{0.2}S$ and MIL-101(Cr). Furthermore, $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) possessed excellent stability during photodegradation and exhibited good reusability. The remarkable photocatalytic performance of $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) is likely due to the effective transfer of electrons and holes at the heterojunction interfaces.

Keywords

References

  1. D. M. T. Nguyen, Z. Y. Zhang and W. O. S. Doherty, J. Agric. Food Chem. 5, 1582 (2015).
  2. R. Sekar and T. J. Dichristina, Environ. Sci. Technol. 21, 12858 (2014).
  3. N. Czekalski, S. Imminger, E. Salhi, M. Veljkovic, K. Kleffel, D. Drissner, F. Hammes, H. Burgmann and U. vonGunten, Environ. Sci. Technol. 21, 11862 (2016).
  4. P. Vijayalakshmi, G. B. Raju and A. Gnanamani, Ind. Eng. Chem. Res. 17, 10194 (2011).
  5. J. Z. Chen, X. J. Wu, L. Yin, B. Li, X. Hong, Z. Fan, B. Chen, C. Xue and H. Zhang, Angew. Chem. Int. Ed. 4, 1210 (2015).
  6. S. N. Zu, Z. Y. Wang, B. Liu, X. P. Fan and G. D. Qian, J. Alloys Compd. 1-2, 689 (2009).
  7. Q. C. Zhao, W. Z. Xu and L. Xu, Mater. Lett. 27, 4944 (2007).
  8. H. M. Wang, P. F. Fang, Z. Chen and S. J. Wang, J. Alloys Compd. 1, 418 (2008).
  9. F. Long, W. M. Wang and Z. K. Cui, Chem. Phys. Lett. 1, 84 (2008).
  10. Z. J. Li, W. Z. Shen, L. M. Fang and X. T. Zu, J. Alloys Compd. 1, 129 (2008).
  11. S. W. Liu, Z. l. Xiu, J. A. Liu, F. X. Xu and J. X. Yu, J. Alloys Compd. 1-2, L12 (2008).
  12. Q. Li, H. Meng, J. G. Yu, W. Xiao, Y. Q. Zheng and J. Wang, Chem. Eur. J. 19, 1176 (2014).
  13. X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang and C. Li, J. Am. Chem. Soc. 23, 7176 (2008).
  14. L.Wang,W. Z.Wang,M. Shang,W. Z. Yin, S. M. Sun and L. Zhang, Int. J. Hydrogen Energy 1, 19 (2010).
  15. V. M. Daskalaki, M. Antoniadou, G. L. Puma, D. I. Kondarides and P. Lianos, Environ. Sci. Technol. 19, 7200 (2010).
  16. J. C. Wu, J. W. Zheng, C. L. Zacherl, P. Wu, Z. K. Liu and R. Xu, J. Phys. Chem. C 40, 19741 (2011).
  17. J. Yu, J. Zhang and M. Jaroniec, Green Chem. 9, 1611 (2010).
  18. S. Q. Peng, R. An, Z. S. Wu and Y. X. Li, Reac. Kinet. Mech. Cat. 1, 105 (2012).
  19. D. H. Wang, L. Wang and A. W. Xu, Nanoscale 6, 2046 (2012).
  20. S. N. Garaje, S. K. Apte, S. D. Naik, J. D. Ambekar, R. S. Sonawane, M. V. Kulkarni, A. Vinu and B. B. Kale, Environ. Sci. Technol. 12, 6664 (2013).
  21. X. Zhang, F. X. Llabresi Xamena and A. Corma, Catalysts. J. Catal. 2, 155 (2009).
  22. Z. Li, N. M. Schweitzer, A. B. League, V. Bernales, A. W. Peters, A. B. Getsoian, T. C. Wang, J. T. Miller, A. Vjunov, J. L. Fulton, J. A. Lercher, C. J. Cramer, L. Gagliardi, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc. 6, 1977 (2016).
  23. H. G. T. Nguyen, L. Mao, A. W. Peters, C. O. Audu, Z. J. Brown, O. K. Farha, J. T. Hupp and S. T. Nguyen, Catal. Sci. Technol. 9, 4444 (2015).
  24. J. J. Zhou, R. Wang, X. L. Liu, F. M. Peng, C. H. Li and F. Teng, Appl. Surf. Sci. 4, 346 (2015).
  25. Y. Su, Z. Zhang, H. Liu and Y. Wang, Appl. Catal. B 1, 200 (2017).
  26. Y. Pi, X. Li and Q. Xia, Chem. Eng. J. 7, 337 (2017).
  27. C. C. Wang, J. R. Li and X. L. Lv, Energy Environ. Sci. 9, 7 (2014).
  28. E. M. Dias and C. Petit, J. Mater. Chem. A 45, 3 (2015).
  29. G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble and I. Margiolaki, Science 5743, 2040 (2005).
  30. M. C. Wen, Y. W. Cui, Y. Kuwahara, K. Mori and H. Yamashita, ACS Appl. Mater. Interfaces 33, 21278 (2016).
  31. N. V. Maksimchuk,M. N. Timofeeva, M. S. Melgunov, A. N. Shmakov, Y. A. Chesalov, D. N. Dybtsev, V. P. Fedin and O. A. Kholdeeva, J. Catal. 2, 315 (2008).
  32. R. Fazaelia, H. Aliyanb, M. Moghandamc and M. Masoudinia, J. Mol. Catal. A Chem. 11, 46 (2013).
  33. S. P. Yang, C. H. Zhang, Y. Q. Cai, X. W. He and H. Y. Niu, J. Alloy. Compd. 1, 735 (2017).
  34. B. F. Luo, D. B. Xu, D. Li, G. L. Wu, M. M. Wu, W. D. Shi and M. Chen, ACS Appl. Mater. Interfaces 31, 17061 (2015).
  35. J. Yan, C. Wang, H. Xu, Y. G. Xu, X. J. She, J. J. Chen, Y. H. Song, H. M. Li and Q. Zhang, Appl. Surf. Sci. 12, 178 (2013).
  36. Z. L. Jin and H. Yang, Nanoscale Res. Lett. 1, 539 (2017).