Browse > Article
http://dx.doi.org/10.1016/j.net.2019.03.016

High energy swift heavy ion irradiation and annealing effects on DC electrical characteristics of 200 GHz SiGe HBTs  

Hegde, Vinayakprasanna N. (Department of Studies in Physics, University of Mysore)
Praveen, K.C. (Laboratory for Electro-Optics Systems (LEOS), ISRO)
Pradeep, T.M. (Department of Studies in Physics, University of Mysore)
Pushpa, N. (Department of PG Studies in Physics, JSS College)
Cressler, John D. (School of Electrical and Computer Engineering, Georgia Institute of Technology)
Tripathi, Ambuj (Inter-University Accelerator Centre (IUAC))
Asokan, K. (Inter-University Accelerator Centre (IUAC))
Prakash, A.P. Gnana (Department of Studies in Physics, University of Mysore)
Publication Information
Nuclear Engineering and Technology / v.51, no.5, 2019 , pp. 1428-1435 More about this Journal
Abstract
The total ionizing dose (TID) and non ionizing energy loss (NIEL) effects of 100 MeV phosphorous ($P^{7+}$) and 80 MeV nitrogen ($N^{6+}$) ions on 200 GHz silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were examined in the total dose range from 1 to 100 Mrad(Si). The in-situ I-V characteristics like Gummel characteristics, excess base current (${\Delta}I_B$), net oxide trapped charge ($N_{OX}$), current gain ($h_{FE}$), avalanche multiplication (M-1), neutral base recombination (NBR) and output characteristics ($I_C-V_{CE}$) were analysed before and after irradiation. The significant degradation in device parameters was observed after $100MeV\;P^{7+}$ and $80MeV\;N^{6+}$ ion irradiation. The $100MeV\;P^{7+}$ ions create more damage in the SiGe HBT structure and in turn degrade the electrical characteristics of SiGe HBTs more when compared to $80MeV\;N^{6+}$. The SiGe HBTs irradiated up to 100 Mrad of total dose were annealed from $50^{\circ}C$ to $400^{\circ}C$ in different steps for 30 min duration in order to study the recovery of electrical characteristics. The recovery factors (RFs) are employed to analyse the contribution of room temperature and isochronal annealing in total recovery.
Keywords
SiGe HBT; Ion irradiation; Gamma irradiation; Current gain degradation; Isochronal annealing; Recovery factors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J.D. Cressler, SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications, IEEE Trans. Microw. Theory Tech. 46 (1998) 572-589.   DOI
2 J.D. Cressler, On the potential of SiGe HBTs for extreme environment electronics, Proc. IEEE 93 (2005) 1559-1582.   DOI
3 J.D. Cressler, Silicon-germanium as an enabling technology for extreme environment electronics, IEEE Trans. Device Mater. Reliab. 10 (2010) 437-448.   DOI
4 H.N. Baek, G.M. Sun, J. suck Kim, S.M. Hoang, M.E. Jin, S.H. Ahn, Improvement of switching speed of a 600-V nonpunch-through insulated gate bipolar transistor using fast neutron irradiation, Nuclear Engineering and Technology 49 (2017) 209-215.   DOI
5 A. Bobby, N. Shiwakoti, P.M. Sarun, S. Verma, K. Asokan, B.K. Antony, Swift heavy ion induced capacitance and dielectric properties of Ni/n-GaAs Schottky diode, Curr. Appl. Phys. 15 (2015) 1500-1505.   DOI
6 G. Vizkelethy, D.K. Brice, B.L. Doyle, Heavy ion beam induced current/charge (IBIC) through insulating oxides, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 249 (2006) 204-208.   DOI
7 K.C. Praveen, N. Pushpa, P.S. Naik, J.D. Cressler, A. Tripathi, A.P. Gnana Prakash, Application of a Pelletron accelerator to study total dose radiation effects on 50GHz SiGe HBTs, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 273 (2012) 43-46.   DOI
8 C. Maiti, G.A. Armstrong, Applications of Silicon-Germanium Heterostructure Devices, CRC Press, 2001.
9 Y. Sun, J. Fu, J. Xu, Y. Wang, W. Zhou, W. Zhang, J. Cui, G. Li, Z. Liu, Degradation differences in the forward and reverse current gain of 25MeV Si ion irradiated SiGe HBT, Phys. B Condens. Matter 449 (2014) 186-192.   DOI
10 A.K. Sutton, Hardness Assurance Testing and Radiation Hardening by Design Techniques for Silicon-Germanium Heterojunction Bipolar Transistors and Digital Logic Circuits, 2009.
11 Y. Sun, J. Fu, J. Xu, Y. Wang, W. Zhou, W. Zhang, J. Cui, G. Li, Z. Liu, Degradation differences in the forward and reverse current gain of 25MeV Si ion irradiated SiGe HBT, Phys. B Condens. Matter 449 (2014) 186-192.   DOI
12 H. Kamimura, S. Yoshioka, M. Akiyama, M. Nakamura, T. Tamura, S. Kuboyama, Development of MOS transistors for radiation-hardened large scale integrated circuits and analysis of radiation-induced degradation, J. Nucl. Sci. Technol. 31 (2014) 24-33.   DOI
13 J.D. Cressler, G. Niu, Silicon-germanium Heterojunction Bipolar Transistors, Artech house, 2002.
14 N.H. Vinayakprasanna, K.C. Praveen, N. Pushpa, A. Tripathi, J.D. Cressler, A.P. Gnana Prakash, 80 MeV carbon ion irradiation effects on advanced 200 GHz silicon-germanium heterojunction bipolar transitors, Advanced Materials Letters 6 (2015) 120-126.   DOI
15 B.M. Haugerud, M.M. Pratapgarhwala, J.P. Comeau, A.K. Sutton, A.P. Gnana Prakash, J.D. Cressler, P.W. Marshall, C.J. Marshall, R.L. Ladbury, M. El-Diwany, C. Mitchell, L. Rockett, T. Bach, R. Lawrence, N. Haddad, Proton and gamma radiation effects in a new first-generation SiGe HBT technology, Solid State Electron. 50 (2006) 181-190.   DOI
16 Y.P. Rao, K.C. Praveen, Y.R. Rani, A. Tripathi, A.P. Gnana Prakash, 75 MeV boron ion irradiation studies on Si PIN photodiodes, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 316 (2013) 205-209.   DOI
17 A. Anjum, N.H. Vinayakprasanna, T.M. Pradeep, N. Pushpa, J. Krishna, A.P. Gnana Prakash, A comparison of 4 MeV Proton and Co-60 gamma irradiation induced degradation in the electrical characteristics of N-channel MOSFETs, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 379 (2016) 265-271.   DOI
18 G.P. Summers, E.A. Burke, P. Shapiro, S.R. Messenger, R.J. Walters, Damage correlations in semiconductors exposed to gamma, electron and proton radiations, IEEE Trans. Nucl. Sci. 40 (1993) 1372-1379.   DOI
19 H. Barnaby, S. Smith, R. Schrimpf, D. Fleetwood, R. Pease, Analytical model for proton radiation effects in bipolar devices, IEEE Trans. Nucl. Sci. 49 (2002) 2643-2649.   DOI
20 N. Saks, M.Simons,D. Fleetwood, J.Yount, P. Lenahan, R. Klein, Radiation effects in oxynitrides grown in N/sub 2/O, IEEE Trans. Nucl. Sci. 41 (1994) 1854-1863.   DOI
21 S. Kosier, R. Shrimpf, R. Nowlin, D. Fleetwood, M. DeLaus, R. Pease, W. Combs, A. Wei, F. Chai, Charge separation for bipolar transistors, IEEE Trans. Nucl. Sci. 40 (1993) 1276-1285.   DOI
22 A. Shatalov, Radiation Effects in III-V Semiconductors and Heterojunction Bipolar Transistors, 2000.
23 G.C. Messenger, J.P. Spratt, The effects of neutron irradiation on germanium and silicon, Proceedings of the IRE 46 (1958) 1038-1044.   DOI
24 J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM-The stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 1818-1823, 2010.   DOI
25 M.A. Xapsos, G.P. Summers, C.C. Blatchley, C.W. Colerico, E.A. Burke, S.R. Messenger, P. Shapiro, Co/sup 60/gamma ray and electron displacement damage studies of semiconductors, IEEE Trans. Nucl. Sci. 41 (1994) 1945-1949.   DOI