• Title/Summary/Keyword: Heterogeneous Catalysis

Search Result 51, Processing Time 0.025 seconds

Density Functional Theory Study of Separated Adsorption of O2 and CO on Pt@X(X = Pd, Ru, Rh, Au, or Ag) Bimetallic Nanoparticles (Pt 기반 이원계 나노입자의 산소 및 일산화탄소 흡착 특성에 대한 전자밀도함수이론 연구)

  • An, Hyesung;Ha, Hyunwoo;Yoo, Mi;Choi, Hyuck;Kim, Hyun You
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.365-369
    • /
    • 2018
  • We perform density functional theory calculations to study the CO and $O_2$ adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and $O_2$, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and $O_2$ binding energy values, which are required for facile CO oxidation. On the other hand, the $O_2$ binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than $O_2$. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Pt-based CO-tolerant CO oxidation catalyst.

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan-Ho;Kim, Sang-Hoon;Reddy, A.S.;Ha, H.;Park, Jeong-Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.245-245
    • /
    • 2012
  • Syntheses of oxide supported metal catalysts by wet-chemical routes have been well known for their use in heterogeneous catalysis. However, uniform deposition of metal nanoparticles with controlled size and shape on the support with high reproducibility is still a challenge for catalyst preparation. Among various synthesis methods, arc plasma deposition (APD) of metal nanoparticles or thin films on oxide supports has received great interest recently, due to its high reproducibility and large-scale production, and used for their application in catalysis. In this work, Au and Pt nanoparticles with size of 1-2 nm have been deposited on titania powder by APD. The size of metal nanoparticles was controlled by number of shots of metal deposition and APD conditions. These catalytic materials were characterized by x-ray diffraction (XRD), inductively coupled plasma (ICP-AES), CO-chemisorption and transmission electron microscopy (TEM). Catalytic activity of the materials was measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. We found that Au/$TiO_2$ is reactive, showing 100% conversion at $110^{\circ}C$, while Pt/$TiO_2$ shows 100% conversion at $200^{\circ}C$. High activity of metal nanoparticles suggests that APD can be used for large scale synthesis of active nanocatalysts. We will discuss the effect of the structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

Carbon-Encapsulated Ni Catalysts for CO2 Methanation (탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응)

  • Kim, Hye Jeong;Kim, Seung Bo;Kim, Dong Hyun;Youn, Jae-Rang;Kim, Min-Jae;Jeon, Sang Goo;Lee, Gyoung-Ja;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst (금속담지 ZSM-5 촉매를 사용한 에탄올로부터 방향족 화합물 제조에 관한 제올라이트의 금속성분 및 실리카/알루미나 비의 영향)

  • Kim, Han-Gyu;Yang, Yoon-Cheol;Jeong, Kwang-Eun;Kim, Tae-Wan;Jeong, Soon-Yong;Kim, Chul-Ung;Jhung, Sung Hwa;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.418-425
    • /
    • 2013
  • The catalytic conversion of ethanol to aromatic compounds ETA was studied over ZSM-5 heterogeneous catalysts. The effect of reaction temperature, weight hourly space velocity (WHSV), and addition of water and methanol, which are the potential impurities of bio-ethanol, on the catalytic performance was investigated in a fixed bed reactor. Commercial ZSM-5 catalysts having different Si/$Al_2$ ratios of 23 to 280 and modified ZSM-5 catalysts by addition of metal (Zn, La, Cu, and Ga) were used for the activity and stability tests in ETA reaction. The catalysts were characterized with ammonia temperature programmed desorption ($NH_3$-TPD) and nitrogen adsorption-desorption techniques. The results of catalytic performance revealed that the optimal Si/$Al_2$ ratio of ZSM-5 is about 50~80 and the selectivity to aromatic compounds decreases in the order of Zn/La > Zn > La > Cu > Ga for the modified ZSM-5 catalysts. Among these catalysts from the ETA reaction, Zn-La/ZSM-5 showed the best catalytic performance for the ETA reaction. The selectivity to aromatic compounds was 72% initially and 56% after 30 h over the catalysts at reaction temperature of $437^{\circ}C$ and WHSV of $0.8h^{-1}$.

Kinetics in Phase Transfer Catalysis with Heterogeneous Liquid-Liquid System (액-액 불균일계에서 상이동촉매의 반응속도론 해석)

  • Park, Sang-Wook;Moon, Jin-Bok;Hwang, Kyong-Son
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.230-237
    • /
    • 1994
  • The reaction conversions of n-butyl acetate in the alkaline hydrolysis of n-butyl acetate by Aliquat 336 were measured in a flat agitator and a dispersion agitator. These measured data was used to analyze the complicated reaction mechanism of the liquid-liquid heterogeneous reaction by a phase transfer catalyst with a pseudo-first order reaction model, a interfacial reaction model and a bulk-body reaction model. The pseudo-firsts order reaction model and the interfacial reaction model could be explained by the experimental data from the dispersion agitator and the bulk-boby reaction model could be explained by those from the flat agitator and the reaction rate constants were $3.1{\times}10^{-4}$, $7.3{\times}10^{-4}$, $6.6m^3/kmol.s$ from these models at $25^{\circ}C$, respectively.

  • PDF

Knoevenagel Reaction in Water Catalyzed by Mesoporous Silica Materials Synthesized from Industrial Waste Coal Fly Ash (석탄회 산업폐기물로부터 제조한 메조다공성 실리카소재를 촉매로 사용하는 Knoevenagel 수용액 반응)

  • Dhokte, Aashish O.;Khillare, Santosh L.;Lande, Machhindra K.;Arbad, Balasaheb R.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.430-435
    • /
    • 2011
  • Coal fly ash of thermal power plants converted into mesoporous materials MCM-41. The synthesized material was characterized by XRD, FT-IR, SEM, and EDS techniques. The catalytic activity of prepared material was studied for the synthesis of 5-arylindene malononitriles via Knoevenagel condensation of aromatic aldehydes and malonontrile is described. The features of present method are easy handling, stability, reusability, and eco-friendliness of catalyst, high yields, short reaction time, simple experimental and work up procedure.

Liquid phase hydrogen peroxide decomposition for micro-propulsion applications

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.21-35
    • /
    • 2017
  • Hydrogen peroxide is being considered as a monopropellant in micropropulsion systems for the next generation of miniaturized satellites ('nanosats') due to its high energy density, modest specific impulse and green characteristics. Efforts at the University of Vermont have focused on the development of a MEMS-based microthruster that uses a novel slug flow monopropellant injection scheme to generate thrust and impulse-bits commensurate with the intended micropropulsion application. The present study is a computational effort to investigate the initial decomposition of the monopropellant as it enters the catalytic chamber, and to compare the impact of the monopropellant injection scheme on decomposition performance. Two-dimensional numerical studies of the monopropellant in microchannel geometries have been developed and used to characterize the performance of the monopropellant before vaporization occurs. The results of these studies show that monopropellant in the lamellar flow regime, which lacks a non-diffusive mixing mechanism, does not decompose at a rate that is suitable for the microthruster dimensions. In contrast, monopropellant in the slug flow regime decomposes 57% faster than lamellar flow for a given length, indicating that the monopropellant injection scheme has potential benefits for the performance of the microthruster.

Silica Gel-Supported Polyphosphoric Acid (PPA-SiO2) Catalyzed One-Pot Multi-Component Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and -thiones: An Efficient Method for the Biginelli Reaction

  • Zeinali-Dastmalbaf, Mohsen;Davoodnia, Abolghasem;Heravi, Majid M.;Tavakoli-Hoseini, Niloofar;Khojastehnezhad, Amir;Zamani, Hassan Ali
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.656-658
    • /
    • 2011
  • A green and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones through one-pot three-component reaction of ethyl acetoacetate, an aryl aldehyde, and urea or thiourea in acetonitrile using silica gel-supported polyphosphoric acid (PPA-$SiO_2$) as catalyst is described. Compared to the classical Biginelli reaction conditions, the present methodology offers several advantages such as high yields, relatively short reaction times, mild reaction condition and a recyclable catalyst with a very easy work up.

Density Functional Theory Studies of Oxygen Affinity of Small Au Nanoparticles

  • Ha, Hyunwoo;Shin, Kihyun;Kim, Hyun You
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.229-235
    • /
    • 2017
  • Through density functional theory calculations, to provide insight into the origins of the catalytic activity of Au nanoparticles (NPs) toward oxidation reactions, we have scrutinized the oxygen adsorption chemistry of 9 types of small unsupported Au NPs of around 1 nm in size (Au13, Au19, Au20, Au25, Au38, and Au55) looking at several factors (size, shape, and coordination number). We found that these NPs, except for the icosahedral Au13, do not strongly bind to $O_2$ molecules. Energetically most feasible $O_2$ adsorption that potentially provides high CO oxidation activity is observed in the icosahedral Au13, our smallest Au NP. In spite of the chemical inertness of bulk Au, the structural fluxionality of such very small Au NP enables strong $O_2$ adsorption. Our results can support recent experimental findings that the exceptional catalytic activity of Au NPs comes from very small Au species consisting of around 10 atoms each.