Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.6.365

Density Functional Theory Study of Separated Adsorption of O2 and CO on Pt@X(X = Pd, Ru, Rh, Au, or Ag) Bimetallic Nanoparticles  

An, Hyesung (Department of Materials Science and Engineering, Chungnam National University)
Ha, Hyunwoo (Department of Materials Science and Engineering, Chungnam National University)
Yoo, Mi (Department of Materials Science and Engineering, Chungnam National University)
Choi, Hyuck (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyun You (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.28, no.6, 2018 , pp. 365-369 More about this Journal
Abstract
We perform density functional theory calculations to study the CO and $O_2$ adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and $O_2$, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and $O_2$ binding energy values, which are required for facile CO oxidation. On the other hand, the $O_2$ binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than $O_2$. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Pt-based CO-tolerant CO oxidation catalyst.
Keywords
density functional theory; Core@Shell nanoparticle; heterogeneous catalysis; first principle; oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Yu, M. D. Porosoff, and J. G. Chen, Chem. Rev., 112, 5780 (2012).   DOI
2 J. Wang, H. Chen, Z. Hu, M. Yao, and Y. Li, Catal. Rev., 57, 79 (2015).   DOI
3 J. Greeley and M. Mavrikakis, Nat. Mater., 3, 810 (2004).   DOI
4 J. K. Norskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Nat. Chem., 1, 37 (2009).   DOI
5 S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, Nat. Mater., 8, 126 (2008).
6 X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, and Y. Huang, Science, 348, 1230 (2015).   DOI
7 V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, and N. M. Markovi , Science, 315, 493 (2007).   DOI
8 T. Engel and G. Ertl, in Advances in Catalysis, Vol. 28, pp. 1-78, edited by D. D. Eley, H. Pines, and P. B. Weez, Academic Press (1979).
9 S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, Nat. Mater., 7, 333 (2008).   DOI
10 S. B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested, and S. Helveg, J. Catal., 281, 147 (2011).   DOI
11 M. Wakisaka, S. Mitsui, Y. Hirose, K. Kawashima, H. Uchida, and M. Watanabe, J. Phys. Chem. B, 110, 23489 (2006).   DOI
12 K. Shin, L. Zhang, H. An, H. Ha, M. Yoo, H. M. Lee, G. Henkelman, and H. Y. Kim, Nanoscale, 9, 5244 (2017).   DOI
13 G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996).   DOI
14 J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992).   DOI
15 P. E. Blochl, Phys. Rev. B, 50, 17953 (1994).   DOI
16 H. Ha, H. An, M. Yoo, J. Lee and H. Y. Kim, J. Phys. Chem. C, 121, 26895 (2017).   DOI
17 E. V. Carino, H. Y. Kim, G. Henkelman, and R. M. Crooks, J. Am. Chem. Soc., 134, 4153 (2012).   DOI
18 H. Y. Kim and G. Henkelman, ACS Catal., 3, 2541 (2013).   DOI
19 H. Y. Kim, H. M. Lee and G. Henkelman, J. Am. Chem. Soc., 134, 1560 (2012).   DOI
20 H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 4, 216 (2013).   DOI