Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.4.229

Density Functional Theory Studies of Oxygen Affinity of Small Au Nanoparticles  

Ha, Hyunwoo (Department of Materials Science and Engineering, Chungnam National University)
Shin, Kihyun (Department of Materials Science and Engineering, KAIST)
Kim, Hyun You (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.27, no.4, 2017 , pp. 229-235 More about this Journal
Abstract
Through density functional theory calculations, to provide insight into the origins of the catalytic activity of Au nanoparticles (NPs) toward oxidation reactions, we have scrutinized the oxygen adsorption chemistry of 9 types of small unsupported Au NPs of around 1 nm in size (Au13, Au19, Au20, Au25, Au38, and Au55) looking at several factors (size, shape, and coordination number). We found that these NPs, except for the icosahedral Au13, do not strongly bind to $O_2$ molecules. Energetically most feasible $O_2$ adsorption that potentially provides high CO oxidation activity is observed in the icosahedral Au13, our smallest Au NP. In spite of the chemical inertness of bulk Au, the structural fluxionality of such very small Au NP enables strong $O_2$ adsorption. Our results can support recent experimental findings that the exceptional catalytic activity of Au NPs comes from very small Au species consisting of around 10 atoms each.
Keywords
density functional theory; gold; heterogeneous catalysis; first principle; oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Haruta, T. Kobayashi, H. Sano and N. Yamada, Chem. Lett., 16, 405 (1987).   DOI
2 M. Haruta, Gold Bull., 37, 27 (2004).   DOI
3 L. Barrio, P. Liu, J. A. Rodriguez, J. M. Campos-Martin and J. L. G. Fierro, J. Chem. Phys., 125, 164715 (2006).   DOI
4 M. S. Chen and D. W. Goodman, Science, 306, 252 (2004).   DOI
5 H. Falsig, B. Hvolbaek, I. S. Kristensen, T. Jiang, T. Bligaard, C. H. Christensen and J. K. Norskov, Angew. Chem. Int. Ed., 47, 4835 (2008).   DOI
6 T. Fujitani, I. Nakamura, T. Akita, M. Okumura and M. Haruta, Angew. Chem. Int. Ed., 48, 9515 (2009).   DOI
7 H. Hakkinen, S. Abbet, A. Sanchez, U. Heiz and U. Landman, Angew. Chem. Int. Ed., 42, 1297 (2003).   DOI
8 B. C. Han, C. R. Miranda and G. Ceder, Phys. Rev. B, 77, 075410 (2008).   DOI
9 T. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei and M. Haruta, Angew. Chem. Int. Ed., 47, 9265 (2008)   DOI
10 A. Roldan, S. Gonzalez, J. M. Ricart and F. Illas, Chem-PhysChem, 10, 348 (2009).
11 M. Valden, X. Lai and D. W. Goodman, Science, 281, 1647 (1998).   DOI
12 B. Yoon, P. Koskinen, B. Huber, O. Kostko, B. von Issendorff, H. Hakkinen, M. Moseler and U. Landman, ChemPhysChem, 8, 157 (2007).   DOI
13 S. Chretien and H. Metiu, J. Chem. Phys., 127, 244708 (2007).   DOI
14 S. Chretien and H. Metiu, J. Chem. Phys., 126, 104701 (2007).   DOI
15 J. Graciani, A. Nambu, J. Evans, J. A. Rodriguez and J. F. Sanz, J. Am. Chem. Soc., 130, 12056 (2008).   DOI
16 Z. P. Liu, X. Q. Gong, J. Kohanoff, C. Sanchez and P. Hu, Phys. Rev. Lett., 91, 266102 (2003).   DOI
17 L. M. Molina and B. Hammer, J. Chem. Phys., 123, 161104 (2005).   DOI
18 J. A. Rodriguez, J. Evans, J. Graciani, J. B. Park, P. Liu, J. Hrbek and J. F. Sanz, J. Phys. Chem. C, 113, 7364 (2009).   DOI
19 B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai and U. Heiz, Science, 307, 403 (2005).   DOI
20 Z. P. Liu, P. Hu and A. Alavi, J. Am. Chem. Soc., 124, 14770 (2002).   DOI
21 L. M. Molina, M. D. Rasmussen and B. Hammer, J. Chem. Phys., 120, 7673 (2004).   DOI
22 I. N. Remediakis, N. Lopez and J. K. Norskov, Angew. Chem. Int. Ed., 44, 1824 (2005).   DOI
23 M. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero and C. B. Murray, Science, 341, 771 (2013).   DOI
24 H. Y. Kim, H. M. Lee and G. Henkelman, J. Am. Chem. Soc., 134, 1560 (2012).   DOI
25 H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 4, 216 (2013).   DOI
26 H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 3, 2194 (2012).   DOI
27 A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon and G. J. Hutchings, Science, 321, 1331 (2008).   DOI
28 G. Hutchings, Nat. Chem., 1, 584 (2009).   DOI
29 M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson and R. M. Lambert, Nature, 454, 981 (2008).   DOI
30 X. -F. Yang, A. Wang, B. Qiao, J. Li, J. Liu and T. Zhang, Acc. Chem. Res., 46, 1740 (2013).   DOI
31 J. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Dominguez, A. Leyva-Perez and A. Corma, Science, 338, 1452 (2012).   DOI
32 H. An, S. Kwon, H. Ha, H. Y. Kim and H. M. Lee, J. Phys. Chem. C, 120, 9292 (2016).
33 W. Song and E. J. M. Hensen, Catal. Sci. Technol., 3, 3020 (2013).   DOI
34 W. Song and E. J. M. Hensen, ACS Catal., 4, 1885 (2014).   DOI
35 R. M. Olson, S. Varganov, M. S. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S. A. Kucharski and M. Musial, J. Am. Chem. Soc., 127, 1049 (2005).   DOI
36 X. P. Xing, B. Yoon, U. Landman and J. H. Parks, Phys. Rev. B, 74, 165423 (2006).   DOI
37 A. Roldan, J. M. Ricart and F. Illas, Theor. Chem. Acc., 123, 119 (2009).   DOI
38 S. Lee, L. M. Molina, M. J. Lopez, J. A. Alonso, B. Hammer, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, M. J. Pellin and S. Vajda, Angew. Chem. Int. Ed., 48, 1467 (2009).   DOI
39 J. Li, X. Li, H.-J. Zhai and L.-S. Wang, Science, 299, 864 (2003).   DOI
40 P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer and A. Fielicke, Science, 321, 674 (2008).   DOI
41 B. Delley, J. Chem. Phys., 113, 7756 (2000).   DOI
42 B. Delley, Comput. Mater. Sci., 17, 122 (2000).   DOI
43 J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Matter., 45, 13244 (1992).   DOI
44 B. Delley, Phys. Rev. B: Condens. Matter., 66, 155125 (2002).   DOI
45 H. Y. Kim, D. H. Kim, J. H. Ryu and H. M. Lee, J. Phys. Chem. C, 113, 15559 (2009).   DOI
46 H. Y. Kim, S. S. Han, J. H. Ryu and H. M. Lee, J. Phys. Chem. C, 114, 3156 (2010).   DOI
47 H. Hakkinen and U. Landman, J. Am. Chem. Soc., 123, 9704 (2001).   DOI
48 J. Hagen, L. D. Socaciu, M. Elijazyfer, U. Heiz, T. M. Bernhardt and L. Woste, Phys. Chem. Chem. Phys., 4, 1707 (2002).   DOI
49 J. Oviedo and R. E. Palmer, J. Chem. Phys., 117, 9548 (2002).   DOI
50 N. Lopez and J. K. Norskov, J. Am. Chem. Soc., 124, 11262 (2002).   DOI
51 W. T. Wallace and R. L. Whetten, J. Am. Chem. Soc., 124, 7499 (2002).   DOI
52 B. Hammer and J. K. Norskov, Adv. Catal., 45, 71 (2000).
53 S. Chretien and H. Metiu, J. Chem. Phys., 128, 044714 (2008).   DOI
54 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).   DOI
55 B. Hammer, L. B. Hansen and J. K. Norskov, Phys. Rev. B: Condens. Matter., 59, 7413 (1999).   DOI
56 M. Baron, O. Bondarchuk, D. Stacchiola, S. Shaikhutdinov and H.-J. Freund, J. Phys. Chem. C, 113, 6042 (2009).   DOI
57 T. Risse, S. Shaikhutdinov, N. Nilius, M. Sterrer and H.-J. Freund, Acc. Chem. Res., 41, 949 (2008).   DOI