• Title/Summary/Keyword: Hertz model

Search Result 72, Processing Time 0.027 seconds

Vibration Analysis of 5-DOF Rotor System Supported by Two or More Ball Bearings Considering Centrifugal Force and Gyroscopic Moment of Ball (Waviness가 존재하며 볼의 원심력과 자이로스코픽 모멘트가 작용하는 볼베어링으로 지지된 5 자유도 회전계의 진동해석)

  • 정성원;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.297-303
    • /
    • 2001
  • This research presents an analytical model to characterize the ball bearing vibration due to the waviness in a rigid rotor supported by multi-row ball bearings considering centrifugal force and gyroscopic moment of ball. The effects of centrifugal force and gyroscopic moment are introduced to the kinematic constraints and force equilibrium equations. The waviness of ball and races is modeled by the superposition of sinusoidal function and it is introduced to position vectors of race curvature center to use the Hertzian contact theory in order to calculate the elastic deflection and nonlinear contact force resulting from the waviness while the rotor has translational and angular motion. They can be determined by solving the nonlinear equations of motion with five degrees of freedom by using the Runge-Kutta-Fehlberg algorithm. The accuracy of this research is validated by comparing with the results of the prior researches. It characterizes the vibration frequencies resulting from the various kinds of waviness in rolling elements, the harmonic frequencies resulting from the nonlinear load-deflection characteristics of ball bearing resulting from the waviness interaction.

  • PDF

Effects of Rolling Numbers and Feeds on Surface Deformation in Surface Rolling of Cast Iron (주철의 표면로울링에서 이송량과 로울링 회수에 따른 변화 연구)

  • Yuck, Kweng-Su;Lee, Yong-Chul;Kwak, Soo-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.68-77
    • /
    • 1989
  • The surface rolling for cylindrical surface of a grey cast iron was carried out using a lathe with a simple newly-designed tool system. A surface rolling tool used was steel ball whose diameter was 3/8 inch (9.525mm) The effects of rolling feeds and number of rolling on surface rolling were investigated. The contact pressure between ball and workpiece which was considered as Hertz's contact problem was examined and the track of motion of a ball on the cylindrical surface of a work- piece was measured according to the rolling feed. The results obtained were as follows; 1. The roughness of the machined surface which was originally 5.3 .approx. 28 umRz decreased to 1.2 .approx. 5 umRz according to rolling feeds and numbers of rolling. 2. The hardness increased from Hv 260 to Hv 290 .approx. 310 through 2 .approx. 4 rollings according to the roughness of machined surfaces. 3. The reduction of diameter was found to be proportional to the variations of roughness of previous machined surfaces. About 60% to 90% of reduction in diameter was made during the first rolling process. 4. An equation relating the reduction of diameter and the variation of surface roughness after surface rolling was presented using a geometric surface model. 5. An equation for the calculation of dynamic contact area between pressure ball and workpiece according to the rolling feed was presented.

  • PDF

Stress based Fatigue Life Prediction for Ball Bearing (볼 베어링의 응력 기반 접촉피로수명 예측)

  • Kim, Tae-Wan;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.44-55
    • /
    • 2007
  • The method for fatigue life prediction of ball bearing is proposed applying the algorithm of contact fatigue prediction based on stress analysis. In order to do this, a series of simulation such as initial surface stress analysis, EHL analysis, subsurface stress analysis and fatigue analysis are conducted from the loading at each ball location calculated for a bearing subjected to external bearing load and contact shape function. And uniaxial fatigue tests are performed to obtain fatigue parameter of AISI 52100 steel. It was found that since stress is usually higher at the inner raceway contact than at the outer raceway contact, fatigue failure occurs on the inner raceway first. When the fatigue life calculated in the stress-based method are compared with L50 life of L-P model, Crossland criterion for the radial load increment is similar to L50 life and Dang Van criterion for the axial load increment is similar. In the case of EHL contact, there is no difference of fatigue life between dry contact and EHL contact, when maximum Hertz pressure exceeds 2.5GPa.

Bearing Vibration and Fatigue Life Analysis According to Fitting between Ball Bearing and Housing with Geometrical Errors (볼 베어링과 형상오차를 갖는 하우징의 끼워 맞춤에 따른 베어링 진동 및 피로 수명의 영향)

  • Lee, Young-Keun;Lee, Seok-Hoon;Jung, Il-Kwon;Cha, Cheol-Hwan;Han, Hyo-Seup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.441-451
    • /
    • 2006
  • It is known that ball bearings mounted in housing or on shaft are playing a key role to keep it running smoothly. The roundness of a housing bore on which bearing outer ring is mounted with interference has directly affected the running accuracy of bearing. The running accuracy of bearing, therefore, can extend the significant influence to the rotating machinery as well. In this paper, bearing's vibration and fatigue life considering raceway roundness of ball bearing before and after mounted in housing bore are theoretically estimated. To perform analysis, a simple three degrees of freedom model was proposed and then Newton-Raphson iterative method was introduced to be utilized in the analysis. The results show that the vibration magnitude of ball bearing fitted into housing unit is appeared considerably larger than the one of its pre-assembling. And theoretical $L_{10}$ life which ninety percent of the bearing population will endure decreased in about fifty percent.

Fracture characterization with high frequency single-hole EM survey

  • Seo, Soon-Jee;Song, Yoon-Ho;Kim, Hee-Joon;Lee, Ki-Ha;Suh, Jung-Hee
    • Proceedings of the KSEEG Conference
    • /
    • 1999.04a
    • /
    • pp.90-93
    • /
    • 1999
  • We present a high frequency electromagnetic (EM) inversion scheme for detecting and characterizing a fracture using single-hole data. At high frequencies, say above tens of mega-hertz, since displacement currents cannot be ignored, electrical permittivity as well as electrical conductivity is to be considered together for analyzing the EM scattering data. In this paper, we have developed a three-step inversion scheme to map the fracture and to evaluate its electrical conductivity and permittivity. We performed EM profiling along the z-axis using three-component receivers for each source. The model was excited by a vertical magnetic dipole and the resistant magnetic fields were inverted using the non-linear least-squares method. Background resistivity and permittivity were easily obtained using vertical magnetic fields below 1 MHz and above 10 MHz, respectively. Both the vertical and dipping sheets were successfully mapped using the phase difference between 40 and 41 MHz. The electrical property of the sheet was well resolved using the information obtained in the previous two steps and secondary magnetic fields. Our study shows the potential of imaging the fracture in single-hole survey environment using the high frequency EM method.

  • PDF

Sustainable Vibration Energy Harvesting Based on Zr-Doped PMN-PT Piezoelectric Single Crystal Cantilevers

  • Moon, Seung-Eon;Lee, Sung-Q;Lee, Sang-Kyun;Lee, Young-Gi;Yang, Yil-Suk;Park, Kang-Ho;Kim, Jong-Dae
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.688-694
    • /
    • 2009
  • In this paper, we present the results of a preliminary study on the piezoelectric energy harvesting performance of a Zr-doped $PbMg_{1/3}Nb_{2/3}O_3-PbTiO_3$ (PMN-PZT) single crystal beam. A novel piezoelectric beam cantilever structure is used to demonstrate the feasibility of generating AC voltage during a state of vibration. The energy-harvesting capability of a PMN-PZT beam is calculated and tested. The frequency response of the cantilever device shows that the first mode resonance frequency of the excitation model exists in the neighborhood of several hundreds of hertz, which is similar to the calculated value. These tests show that several significantly open AC voltages and sub-mW power are achieved. To test the possibility of a small scale power source for a ubiquitous sensor network service, energy conversion and the testing of storage experiment are also carried out.

Giga-Hertz-Level Electromagnetic Field Analysis for Equivalent Inductance Modeling of High-Performance SoC and SiP Designs

  • Yao Jason J.;Chang Keh-Jeng;Chuang Wei-Che;Wang, Jimmy S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.255-261
    • /
    • 2005
  • With the advent of sub-90nm technologies, the system-on-chip (SoC) and system-in-package (SiP) are becoming the trend in delivering low-cost, low-power, and small-form-factor consumer electronic systems running at multiple GHz. The shortened transistor channel length reduces the transistor switching cycles to the range of several picoseconds, yet the time-of-flights of the critical on-chip and off-chip interconnects are in the range of 10 picoseconds for 1.5mm-long wires and 100 picoseconds for 15mm-long wires. Designers realize the bottleneck today often lies at chip-to-chip interconnects and the industry needs a good model to compute the inductance in these parts of circuits. In this paper we propose a new method for extracting accurate equivalent inductance circuit models for SPICE-level circuit simulations of system-on-chip (SoC) and system-in-package (SiP) designs. In our method, geometrical meshes are created and numerical methods are used to find the solutions for the electromagnetic fields over the fine meshes. In this way, multiple-GHz SoC and SiP designers can use accurate inductance modeling and interconnect optimization to achieve high yields.

Bearing Vibration and Fatigue Life Analysis According to Fitting between Ball Bearing and Housing with Geometrical Errors (형상오차를 갖는 보올 베어링과 하우징의 끼워 맞춤에 따른 베어링 진동 및 수명의 영향)

  • Lee, Young-Keun;Lee, Seok-Hoon;Jung, Il-Kwon;Cha, Cheol-Hwan;Han, Hyo-Seup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.112-118
    • /
    • 2005
  • Ball bearings which were fitted between housing and shaft play an important role in rotating shaft system smoothly, Therefore bearing's running accuracy has significant influence on that of rotating machinery. Manufacturing accuracy of bearings as well as that of shaft and housing is main factor to affect bearing running accuracy In this paper, bearing's vibration and fatigue life considering raceway roundness of ball bearing before and after being fitted into housing are theoretically estimated. To perform analysis, a simple three degrees of freedom model was proposed and then these analysis was conducted utilizing the Newton-Raphson iterative method. The results show that vibration magnitude of ball bearing fitted into housing is considerably larger than before assembly, and bearing's theoretical L$_{10}$ fatigue life that ninety percent of the bearing population will endure decreased in about fifty percent.

  • PDF

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

A Study on the Change in the Film Thickness of Ball Bearing in Starved EHL (윤활유 부족 상태에서의 볼 베어링 유막 두께 변화에 대한 연구)

  • Jung, SoonBi;Lee, Bora;Yu, YongHun;Cho, YongJoo
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.119-125
    • /
    • 2017
  • In this study, we perform a numerical analysis to predict the film thickness and lubrication regions for a thrust ball bearing under different operating conditions. Film thinning and replenishment affect the film thickness in starved lubrication. As the inlet meniscus position is brought to the edge of the Hertz contact, the thin film thickness is calculated as starved equation. We use a film replenishment model to determine the recovery film thickness between rolling elements. We use a hydrodynamic model to describe film recovery, that results from the effects of surface tension. In this model, we consider the surface tension gradient in fluid depression as the driving force for fluid recovery. We use Fourier transform method to determine the time-dependent depth of depressed oil. We calculate the change in the central film thickness graphically by using the recovery equation in starved elastohydrodynamic lubrication(EHL) under operating conditions that include numbers of balls, sliding velocity, applied force, and ambient film thickness. We evaluate the degree of starvation by using the distance from the center of the contact area to the meniscus position. Parched lubrication, a phenomenon where the film thickness decreases consistently, occurs at the severe condition. We determine optimal values with respect to the numbers of balls, and sliding velocity. The investigation can contribute to the design operating conditions for proper lubrication.