DOI QR코드

DOI QR Code

Sustainable Vibration Energy Harvesting Based on Zr-Doped PMN-PT Piezoelectric Single Crystal Cantilevers

  • Moon, Seung-Eon (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Sung-Q (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Sang-Kyun (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Young-Gi (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Yang, Yil-Suk (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Park, Kang-Ho (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Kim, Jong-Dae (Convergence Components & Materials Research Laboratory, ETRI)
  • Received : 2009.04.29
  • Accepted : 2009.10.05
  • Published : 2009.12.31

Abstract

In this paper, we present the results of a preliminary study on the piezoelectric energy harvesting performance of a Zr-doped $PbMg_{1/3}Nb_{2/3}O_3-PbTiO_3$ (PMN-PZT) single crystal beam. A novel piezoelectric beam cantilever structure is used to demonstrate the feasibility of generating AC voltage during a state of vibration. The energy-harvesting capability of a PMN-PZT beam is calculated and tested. The frequency response of the cantilever device shows that the first mode resonance frequency of the excitation model exists in the neighborhood of several hundreds of hertz, which is similar to the calculated value. These tests show that several significantly open AC voltages and sub-mW power are achieved. To test the possibility of a small scale power source for a ubiquitous sensor network service, energy conversion and the testing of storage experiment are also carried out.

Keywords

References

  1. J.A. Stankovic, "When Sensor and Actuator Networks Cover the World," ETRI J., vol. 30, no. 5, 2008, pp. 627-33. https://doi.org/10.4218/etrij.08.1308.0099
  2. S. Maeng et al., "SOI CMOS-Based Smart Gas Sensor System for Ubiquitous Sensor Networks," ETRI J., vol. 30, no. 4, 2008, pp. 516-525. https://doi.org/10.4218/etrij.08.0108.0101
  3. H.K. Lee et al., "Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module," ETRI J., vol. 31, no. 6, Dec. 2009, pp. 695-702. https://doi.org/10.4218/etrij.09.1209.0023
  4. J.A. Paradiso and T. Starner, "Energy Scavenging for Mobile and Wireless Electronics," IEEE Pervasice Comput., vol. 4, 2005, pp. 16-27.
  5. S. Roundy and P.K. Wright, "A Piezoelectric Vibration Based Generator for Wireless Electronics," Smart Mater. Struct., vol. 13, 2004, pp. 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018
  6. S.R, Anton and H.A. Sodano, "A Review of Power Harvesting Using Piezoelectric Materials," Smart Mater. Struct., vol. 16, 2007, pp. R1-21. https://doi.org/10.1088/0964-1726/16/3/R01
  7. J. Kim, "Formation of a Porous Silicon Anti-reflection Layer for a Silicon Solar Cell," J. Korean Phys. Soc., vol. 50, 2007, pp. 1168-1171. https://doi.org/10.3938/jkps.50.1168
  8. S.P. Beeby, M.J. Tudor, and N.M. White, "Energy Harvesting Vibration Sources for Microsystems Applications," Meas. Sci. Technol., vol. 17, 2006, pp. R175-195. https://doi.org/10.1088/0957-0233/17/12/R01
  9. M.Y. Kim, T.S. Oh, and J.S. Kim, "Annealing Behavior of Bi2Te3 Thermoelectric Semiconductor Electrodeposited for Nanowire Applications," J. Korean Phys. Soc., vol. 50, 2007, pp. 670-676. https://doi.org/10.3938/jkps.50.670
  10. Y.K. Hong and K.S. Moon, "Single Crystal Piezoelectric Transducers to Harvest Vibration Energy," Proc. SPIE, vol. 6048, 2005, pp. 60480E-1-3.
  11. A. Badel et al., "Single Crystals and Nonlinear Process for Outstanding Vibration-Powered Electrical Generators," IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 53, no. 4, 2006, pp. 673-684. https://doi.org/10.1109/TUFFC.2006.1621494
  12. S. Roundy, P.K. Wright, and J. Rabaey, "A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes," Comput. Commun., vol. 26, 2003, pp. 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
  13. V.H. Schmidt, "Theoretical Electric Power Output per Unit Volume of PVF2 and Mechniacl-to-Electrical Conversion Efficiency as Functions of Frequency," Proc. the 6th IEEE Int. Symp. Appl. Ferroelectr., 1986, pp. 538-542.
  14. J. Ajitsaria et al., "Modeling and Analysis of a Bimorph Piezoelectric Cantilever Beam for Voltage Generation," Smart Mater. Struct., vol. 16, 2007, pp. 447-454. https://doi.org/10.1088/0964-1726/16/2/024
  15. J.H. Cho et al., "Generated Power Characterization of Piezoelectrics with Electromechanical Coupling Coefficient and Quality Factor," IEEE Ultrason. Symp., 2006, pp. 485-488.
  16. J. Twiefel et al., "Power Output Estimation and Experimental Validation for Piezoelectric Energy Harvesting Systems," J. Electroceramics, vol. 20, 2008, pp. 203-208. https://doi.org/10.1007/s10832-007-9168-5
  17. A. Erturk and D.J. Inman, "On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters," J. Intell. Mater. Syst. and Structures, vol. 19, 2008, pp. 1311-1325. https://doi.org/10.1177/1045389X07085639
  18. S. Priya, "Modeling of Electric Energy Harvesting Using Piezoelectric Windmill," Appl. Phys. Lett., vol. 87, 2005, pp.184101-184103. https://doi.org/10.1063/1.2119410
  19. Q. Chen and Q.M. Wang, "The Effective Electromechanical Coupling Coefficient of Piezoelectric Thin-Film Resonators," Appl. Phys. Lett., vol. 86, 2005, pp. 022905-022906. https://doi.org/10.1063/1.1850598
  20. H.W. Kim, S. Priya, and K. Uchino, "Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers," Jpn. J. Appl. Phys., vol. 45, 2006, pp. 5836-5840. https://doi.org/10.1143/JJAP.45.5836
  21. M. Renaud et al., "Piezoelectric Harvesters and MEMS Technology: Fabrication, Modeling and Measurements," Proc. Transducers & Eurosensors, 2007, pp. 891-894.
  22. http://www.ceracomp.com.
  23. J.W. Yi, W.Y. Shih, and W.H. Shih, "Effect of Length, Width, and Mode on the Mass Detection Sensitivity of Piezoelectric Unimorph Cantilevers," J. Appl. Phys., vol. 91, 2003, pp. 1680-1686. https://doi.org/10.1063/1.1427403
  24. S.J. Jeong et al., "Properties of a Multi-Stack Type Piezoelectric Energy Harvesting Device," Integr. Ferroelectr., vol. 98, 2008, pp. 208-215. https://doi.org/10.1080/10584580802096507
  25. H.C. Song et al., "Multilayer Piezoelectric Energy Scavenger for Large Current Generation," J. Electroceramics, vol. 23, Oct. 2009, pp. 301-304. https://doi.org/10.1007/s10832-008-9439-9
  26. N.S. Hudak and G.G. Amatucci, "Small-Scale Energy Harvesting Through Thermoelectric, Vibration, and Radiofrequency Power Conversion," J. Appl. Physics, vol. 103, no. 10, 2008, pp. 101301-24. https://doi.org/10.1063/1.2918987

Cited by

  1. Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module vol.31, pp.6, 2009, https://doi.org/10.4218/etrij.09.1209.0023
  2. Structural, electrical and gas sensing properties of eletrospun TiO2 nanofibers vol.518, pp.22, 2010, https://doi.org/10.1016/j.tsf.2010.02.074
  3. Bending strength of piezoelectric ceramics and single crystals for multifunctional load-bearing applications vol.59, pp.6, 2009, https://doi.org/10.1109/tuffc.2012.2299
  4. Recycling Piezo-Crystal Based Sounders from Small (Electronic) Devices into Energy Harvesting Devices vol.824, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.824.138
  5. 모드 순서 전환된 2자유도계 압전 진동 에너지 수확 장치의 수학적 모델 vol.23, pp.6, 2013, https://doi.org/10.5050/ksnve.2013.23.6.546
  6. 2-2 composites based on [011]-poled relaxor-ferroelectric single crystals: analysis of the piezoelectric anisotropy and squared figures of merit for energy harvesting applications vol.20, pp.4, 2014, https://doi.org/10.1007/s00542-013-2012-8
  7. Energy harvesting from low frequency applications using piezoelectric materials vol.1, pp.4, 2009, https://doi.org/10.1063/1.4900845
  8. A multisource energy harvesting utilizing highly efficient ferroelectric PMN-PT single crystal vol.27, pp.10, 2009, https://doi.org/10.1007/s10854-016-5073-5
  9. Study on electromagnetic energy transducer in ambient vibration vol.11, pp.12, 2018, https://doi.org/10.1049/iet-pel.2017.0886
  10. Design and Fabrication of a Thermoelectric Generator Based on BiTe Legs to power Wearable Device vol.73, pp.11, 2018, https://doi.org/10.3938/jkps.73.1760
  11. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018) vol.28, pp.11, 2019, https://doi.org/10.1088/1361-665x/ab36e4