• Title/Summary/Keyword: Heavy weight aggregate

Search Result 28, Processing Time 0.021 seconds

A Study on the Phrsical and Mechanical Properties of Concrete with Ferro Copper Slag (동슬래그를 잔골재로 사용한 콘크리트의 물리.역학적 특성에 관한 연구)

  • Lee, Mun-Hwan;Lee, Sea-Hyun;Song, Tae-Hyeob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.361-368
    • /
    • 2003
  • As the supply of aggregate needed in the construction site becomes difficult due to preservation of environment and exhaust of aggregate resource, a research for replacement aggregate in shortage is being actively progressed and a copper slag is also a kind of replacing aggregate. To use copper slag as fine aggregate of concrete, many studies are already conducted in each of the advanced countries and in the state of applying these at the site. In the year of 2000 a Korea industrial standard of Copper slag aggregate for concrete was established in our country so that this can be applied in the construction site. This study is to find out whether copper slag is equipped with the physical and chemical requirements for the use in concrete aggregate, and to analyze the dynamic properties of copper slag concrete that replaces 25, 50, 75, 100% of fine aggregate. Copper slag study not only satisfies the using condition of fine aggregate, but also reveals high level of physical property compared to ordinary concrete up to 50% of sand replacement rate. In the future after confirming the durability of concrete using copper slag, it is judged to be advantageous for the preservation of environment to use this as a replacement material for natural aggregate.

Study on the Long age Strength Properties of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 장기강도 특성에 관한 연구)

  • 박세인;이동화;김종수;김명수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.113-117
    • /
    • 2000
  • The objective of this study is to find the long-age strength property and the compressive strength of age which is used as the specified concrete strength. The W/W ratio (45%, 50%, 55%, 60%) fine aggregate of useful river sand or blended sand(river sane : sea sand=1:1) were chosen as the experimental parameters. the experimental results show that pH(it means the material segregation resistance) & suspension were increased larger, so W/C become larger, and slump flow was increased as W/C increased (except W/C=60%), air-contents were decreased as W/C became increase and all of this results are satisfied with the under of 40%. The compressive strength ( a case use only river sand as fine aggregate) is showed less than the case of blended asnd. Because the unit weight of the blended sand is more heavy than the unit weigh of the river sand. The results of the case which haven been used only river sand, and the case have been used blended sand), both case have considered W/C. So it's possible to use the compressive strength of age 28 day like the case of plain concrete.

  • PDF

A Study on Status Analysis and Improvement of Heavy Cargo Logistics (중량물 물류 실태 분석 및 개선 방안에 관한 연구)

  • Park, Du-Seon;Lee, Cheong-Hwan;Choi, Kyung-Hoon;Park, Gyei-Kark
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.3
    • /
    • pp.35-52
    • /
    • 2017
  • Interest and demand in heavy cargo logistics is increasing and becoming more diverse as economic scales have expanded and manufacturing activity has increased. Although cargo moves via maritime and/or land transportation, there is currently insufficient research on the actual condition of heavy cargo logistics. The purpose of this study is to carry out an in-depth analysis of heavy cargo laws, systems, logistics patterns, and current transportation status. By proposing measures to solve existing problems, this study aims to make an important and ongoing contribution to the scarcely studied field of heavy cargo logistics. The result of regression analysis on the main seven factors show that transportation frequency and law/system structure have a positive effect on working conditions. Furthermore, the result of correlation analysis on the main seven factors show that the cargo weight variable is highly positively correlated with cargo size. Also, the working conditions variable is highly positively correlated with the law/system structure. Detailed proposal measures to solve existing problems are summarized as follows. First, it is necessary to establish a clear concept of heavy cargo as numerous existing definitions differ. Second, laws and provisions relating to maritime and land transportation of heavy cargo need to be established and consolidated as current applicable legislation is insufficient. Third, the classification system for heavy cargo transportation needs improvement. Fourth, it is necessary to improve transportation performance statistics and the aggregate criteria system. Finally, the management system of heavy cargo also needs improvement.

Recovery of Calcium Phosphate from Sewage Sludge Ash (하수슬러지 소각재로부터 Ca-P 형태의 인 회수)

  • Jung, Jinmo;Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.29-37
    • /
    • 2018
  • In this study, optimum extraction conditions for phosphorus recovery from sewage sludge ash(SSA) were investigated. For this purpose, an experiment was conducted to determine optimal recovery conditions for Ca-P type phosphorus by using calcium component in the recycled aggregate residue. The phosphorus content of sewage sludge ash was confirmed to be 5.0 %. When $H_2SO_4$ was used as an extract, concentration of 1 N $H_2SO_4$, L/S ratio of 10, and extraction time of 30 min were found to be the optimal extraction conditions. Phosphorus was extracted by using optimal extraction conditions, and then the heavy metals eluted with phosphorus were removed using 1~20 g of cation exchange resin. In 20 g of cation exchange resin, Fe 71.3%, Cu 82.4%, Zn 79.9%, and Cr 15% were removed. After that, the mixing ratio of the calcium extract obtained from the recycled aggregate residue (RAR) was changed to 1:1, 1:5, 1:10. The pH of the SSA to RAR mixture was adjusted to 2, 4, 8 and 12 by the addition of 5 N NaOH to the mixture of 1:5, and the phosphorus was recovered as Ca-P type precipitate. The optimum pH was 8. When recycled aggregate residues were used, the weight of calcium phosphate increased, but the amount of wastewater generated also increased. Therefore, it was concluded that the use of recycled aggregate residue was not economically feasible.

Development of a Lightweight Construction Material Using Hollow Glass Microspheres (중공 유리 마이크로스피어를 활용한 경량 소재 개발)

  • Lee, Nankyoung;Moon, Juhyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.449-455
    • /
    • 2022
  • Concrete is the most widely used construction material. The heavy self-weight of concrete may offer an advantage when developing high compressive strength and good dimensional stability. However, it is limited in the construction of super-long bridges or very high skyscrapers owing to the substantially increased self-weight of the structure. For developing lightweight concrete, various lightweight aggregates have typically been utilized. However, due to the porous characteristics of lightweight aggregates, the strength at the composite level is generally decreased. To overcome this intrinsic limitation, this study aims to develop a construction material that satisfies both lightweight and high strength requirements. The developed cementitious composite was manufactured based on a high volume usage of hollow glass microspheres in a matrix with a low water-to-cement ratio. Regardless of the tested hollow glass microspheres from among four different types, compressive strength outcomes of more than 60 MPa and 80 MPa with a density of 1.7 g/cm3 were experimentally confirmed under ambient and high-temperature curing, respectively.

Engineering Characteristics of CLSM with Regard to the Particle Size of Bottom Ash (저회의 입도변화에 따른 CLSM의 공학적특성)

  • Lee, Yongsoo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.10
    • /
    • pp.5-10
    • /
    • 2020
  • As the demand for the recycling of industrial by-products increases due to various environmental restrictions including the prohibition of ocean disposal, various studies regarding the recycling of industrial by-products are currently being carried out. One of the industrial by-product, coal ash is produced from thermal power generation; studies on the recycling of fly ash have been actively carried out and it is currently recycled in various fields. In the case of bottom ash, however, only a portion of the total amount generated is primarily processed into a particle size of 2~4mm or less than 2mm to be used for gardening purpose and light weight aggregate and so on. The remaining amount is buried at ash disposal sites. Therefore, various studies are needed to develop measures to use bottom ash. This study aimed at identifying the optimal particle size and mixing ratio of bottom ash to be used as CLSM aggregate. To this end, it evaluated the usability of bottom ash as CLSM aggregate, by investigating the flowability and strength change characteristics of CLSM produced with regard to the mixing ratio of weathered granite soil and bottom ash, particle size of bottom ash to be mixed and soil binder addition rate and conducting a heavy metal leaching test.

Evaluation of Anti-Stripping Performance in Asphalt Concrete using Byproduct Ash produced from Circulating Fluidized Bed Boiler (보일러 부산 애쉬를 이용한 아스팔트 콘크리트의 박리저항성 평가)

  • Kim, Yooseok;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.319-325
    • /
    • 2018
  • Pot-holes are steadily increasing due to abnormal climate such as heavy rainfall and frequent snowfall. Pot-hole related to traffic accidents cause injuries, car damage and distress of road facilities. To reduce pot-holes, the use of an anti-stripping agent is mandatorily recommended to asphalt concrete mixture. Hydrated lime is commonly used as anti-stripping agent due to the convenience and economics. Byproduct ash from circulating fluidized bed boiler was reviewed as an anti stripping agent. According to the test results, the byproduct ash is satisfied with TSR specification using 1% to 3% by weight of the asphalt mixture. The byproduct ash was examined under various condition changes of aggregate and asphalt concrete mixture considering quality movement. According to the results, using the byproduct ash was measured average 0.87 of TSR and coverage rates of 60% after rolling bottle test. Test results also revealed that the byproduct ash showed stable performance. Using the byproduct ash to decrease pot-hole in asphalt concrete pavement is suitable for demonstrating stable performance as anti-stripping agent.

Manufacturing artificial lightweight aggregates using coal bottom ash and its application to the lightweight-concretes (석탄 바닥재를 이용한 인공경량골재의 제조 및 경량 콘크리트에 적용)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.211-216
    • /
    • 2008
  • The artificial lightweight aggregate (ALA) was manufactured in a rotary kiln at $1125^{\circ}C$ using green body formed by pelletizing the batch powder composing of coal bottom ash (CBA) produced from power plant, clay and dredged soil (DS). The TCLP (Toxicity characteristic leaching procedure) results showed that the dissolution concentration of heavy metal ions of ALA fabricated in this study was below the limitation defined by the enforcement regulations of wastes management law in Korea. The ALA containing 60$\sim$70 wt% CBA had a bulk density of 1.45$\sim$1.49 and a water absorption of 17.2$\sim$18.5 %. The impact values for oven-dry state and saturated-surface dry state of ALA were 27.4$\pm$1.3 and 23.4$\pm$2.6 % respectively. The 28-days compressive strength of concrete made with various ALA was $22.7\sim27.8 N/mm^2$. The slump of concrete with ALA containing CBA 60 and 70 wt% were 7.9 and 14.3 cm respectively. The unit weight of concrete made with any ALA fabricated in this study was satisfied with the standard specifications of lightweight concrete for the civil engineering and construction presented by Korea as below $1.84 ton/m^3$.