DOI QR코드

DOI QR Code

Development of a Lightweight Construction Material Using Hollow Glass Microspheres

중공 유리 마이크로스피어를 활용한 경량 소재 개발

  • 이난경 (서울대학교 건설환경공학부) ;
  • 문주혁 (서울대학교 건설환경공학부)
  • Received : 2021.11.24
  • Accepted : 2022.03.24
  • Published : 2022.08.01

Abstract

Concrete is the most widely used construction material. The heavy self-weight of concrete may offer an advantage when developing high compressive strength and good dimensional stability. However, it is limited in the construction of super-long bridges or very high skyscrapers owing to the substantially increased self-weight of the structure. For developing lightweight concrete, various lightweight aggregates have typically been utilized. However, due to the porous characteristics of lightweight aggregates, the strength at the composite level is generally decreased. To overcome this intrinsic limitation, this study aims to develop a construction material that satisfies both lightweight and high strength requirements. The developed cementitious composite was manufactured based on a high volume usage of hollow glass microspheres in a matrix with a low water-to-cement ratio. Regardless of the tested hollow glass microspheres from among four different types, compressive strength outcomes of more than 60 MPa and 80 MPa with a density of 1.7 g/cm3 were experimentally confirmed under ambient and high-temperature curing, respectively.

콘크리트는 가장 많이 사용되는 건설재료이다. 콘크리트의 비교적 높은 자중은 압축강도 발현과 수축저항성에서 이점을 갖지만, 초장대교량이나 초고층빌딩에 적용되기에는 구조물 자체의 무게가 큰 폭으로 증가하게 되어 거대 구조물의 형상을 제약하는 조건이 되기도 한다. 이러한 문제를 해결하고자, 경량골재를 사용하는 경량 콘크리트 개발이 많이 진행되어 왔으나, 경량 골재의 경우 다공질 구조로 인해 자체 강도가 작기 때문에, 일반적으로 경량 콘크리트는 일반 콘크리트에 비해서 낮은 강도를 가지게 된다. 본 연구에서는 기존의 경량 콘크리트의 한계점을 극복한 경량을 유지하면서 고강도를 만족시키는 건설재료를 개발하고자 하였다. 중공 유리 마이크로스피어를 낮은 물-시멘비율의 매트릭스에 다량으로 사용하는 방법을 적용해 보았으며, 네 가지 다른 종류의 마이크로스피어를 사용하여 그 적용성을 살펴보았다. 실험결과, 마이크로스피어의 종류와 관계 없이 밀도 1.7 g/cm3를 유지하면서 압축강도 60 MPa와 80 MPa를 각각 상온양생과 고온양생 조건에서 만족하는 것을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 2022년 국토교통과학기술부의 지원으로 수행되었습니다. 이에 감사드립니다(22NANO-B156177-03). 본 논문은 2021 CONVENTION 논문을 수정·보완하여 작성되었습니다.

References

  1. ACI (American Concrete Institute) Committee (2003). "Guide for structural lightweight-aggregate concrete (ACI 213R)." ACI Symposium Publication, Vol. 213.
  2. ACI (American Concrete Institute) Committee (2005). "High-strength concrete (ACI 363R)." ACI Symposium Publication, Vol. 228, pp. 79-70.
  3. ASTM, A. (2008a). C230, Specification for flow table for use in tests of hydraulic cement. Annual Book of ASTM Standards 401.
  4. ASTM, A. C230. (2008b). Specification for flow table for use in tests of hydraulic cement. Annual Book of ASTM Standards, 401.
  5. Blanco, F., Garcia, P., Mateos, P. and Ayala, J. (2000). "Characteristics and properties of lightweight concrete manufactured with cenospheres." Cement and Concrete Research, Vol. 30, No. 11, pp. 1715-1722. https://doi.org/10.1016/S0008-8846(00)00357-4
  6. Brooks, A. L., Zhou, H. and Hanna, D. (2018). "Comparative study of the mechanical and thermal properties of lightweight cementitious composites." Construction and Building Materials, Vol. 159, pp. 316-328. https://doi.org/10.1016/j.conbuildmat.2017.10.102
  7. Deng, G. and Cahill, L. (1993). "An adaptive gaussian filter for noise reduction and edge detection." 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, IEEE, United States.
  8. Dixit, A., Pang, S. D., Kang, S. H. and Moon, J. H. (2019). "Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation." Cement and Concrete Composites, Vol. 102, pp. 185-197. https://doi.org/10.1016/j.cemconcomp.2019.04.023
  9. Eurocode, C. (1992). 2: Design of concrete structures, British Standards Institution.
  10. Gao, Y., Cheng, L., Gao, Z. and Guo, S. (2013). "Effects of different mineral admixtures on carbonation resistance of lightweight aggregate concrete." Construction and Building Materials, Vol. 43, pp. 506-510. https://doi.org/10.1016/j.conbuildmat.2013.02.038
  11. Huang, X., Ranade, R., Zhang, Q., Ni, W. and Li, V. C. (2013). "Mechanical and thermal properties of green lightweight engineered cementitious composites." Construction and Building Materials, Vol. 48, pp. 954-960. https://doi.org/10.1016/j.conbuildmat.2013.07.104
  12. Kang, S. H., Hong, S. G. and Moon, J. H. (2018). "Importance of drying to control internal curing effects on field casting ultra-high performance concrete." Cement and Concrete Research, Vol. 108, pp. 20-30. https://doi.org/10.1016/j.cemconres.2018.03.008
  13. Kim, H. K., Jeon, J. H. and Lee, H. K. (2012). "Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air." Construction and Building Materials, Vol. 29, pp. 193-200. https://doi.org/10.1016/j.conbuildmat.2011.08.067
  14. Krakowiak, K. J., Nannapaneni, R. G., Moshiri, A., Phatak, T., Stefaniuk, D., Sadowski, L. and Qomi, M. J. A. (2020). "Engineering of high specific strength and low thermal conductivity cementitious composites with hollow glass microspheres for high-temperature high-pressure applications." Cement and Concrete Composites, Vol. 108, 103514. https://doi.org/10.1016/j.cemconcomp.2020.103514
  15. Lee, N. K., Jeong, Y. U., Kang, H. U. and Moon, J. H. (2020). "Heat-induced acceleration of pozzolanic reaction under restrained conditions and consequent structural modification." Materials, Vol. 13, No. 13, 2950. https://doi.org/10.3390/ma13132950
  16. Mohammad, M., Masad, E., Seers, T. and Al-Ghamdi, S. G. (2020). "Properties and microstructure distribution of high-performance thermal insulation concrete." Materials, Vol. 13, No. 9, 2091. https://doi.org/10.3390/ma13092091
  17. Mounanga, P., Gbongbon, W., Poullain, P. and Turcry, P. (2008). "Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes." Cement and Concrete Composites, Vol. 30, No. 9, pp. 806-814. https://doi.org/10.1016/j.cemconcomp.2008.06.007
  18. Otsu, N. (1979). "A threshold selection method from gray-level histograms." IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62-66. https://doi.org/10.1109/TSMC.1979.4310076
  19. Sengul, O., Azizi, S., Karaosmanoglu, F. and Tasdemir, M. A. (2011). "Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete." Energy and Buildings, Vol. 43, No. 2, pp. 671-676. https://doi.org/10.1016/j.enbuild.2010.11.008
  20. Standard, B. (2004). Eurocode 2: Design of concrete structures-. Part 1, Vol. 1, pp. 230.
  21. Tandiroglu, A. (2010). "Temperature-dependent thermal conductivity of high strength lightweight raw perlite aggregate concrete." International Journal of Thermophysics, Vol. 31, No. 6, pp. 1195-1211. https://doi.org/10.1007/s10765-010-0826-5
  22. Wu, Y., Wang, J. Y., Monteiro, P. J. M. and Zhang, M. H. (2015). "Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings." Construction and Building Materials, Vol. 87, pp. 100-112. https://doi.org/10.1016/j.conbuildmat.2015.04.004
  23. Yun, T. S., Jeong, Y. J., Han, T. S. and Youm, K. S. (2013). "Evaluation of thermal conductivity for thermally insulated concretes." Energy and Buildings, Vol. 61, pp. 125-132. https://doi.org/10.1016/j.enbuild.2013.01.043
  24. Zhou, H. and Brooks, A. L. (2019). "Thermal and mechanical properties of structural lightweight concrete containing light-weight aggregates and fly-ash cenospheres." Construction and Building Materials, Vol. 198, pp. 512-526. https://doi.org/10.1016/j.conbuildmat.2018.11.074