• Title/Summary/Keyword: Heavy Weight Cargo

Search Result 20, Processing Time 0.03 seconds

Erection Simulation Considering Interaction between a Floating Crane and a Heavy Cargo (해상크레인과 대형 중량물의 상호 작용을 고려한 탑재 시뮬레이션)

  • Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.70-83
    • /
    • 2010
  • Recently, floating cranes are mainly used to erect heavy blocks or cargos for constructing ships in many shipyards. It is important to estimate the dynamic motion of the heavy cargo suspended by a floating crane and the tension of the wire ropes between the floating crane and the heavy cargo. In this paper, the coupled dynamic equations of motion are set up for considering the 6 degree-of-freedom floating crane and the 6-degrees-of-freedom heavy cargo based on multibody system dynamics. Depending on the cargo weight, the motion of the floating crane would be changed to nonlinear state. The nonlinear terms in the equation of motion are considered. In addition, the nonlinear hydrostatic force, the linear hydrodynamic force, wire rope force, mooring force and gravity force are considered as the external forces. As the result of this paper, we analyze the engineering effect for erecting the heavy cargo by using the floating crane.

A Study on Status Analysis and Improvement of Heavy Cargo Logistics (중량물 물류 실태 분석 및 개선 방안에 관한 연구)

  • Park, Du-Seon;Lee, Cheong-Hwan;Choi, Kyung-Hoon;Park, Gyei-Kark
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.3
    • /
    • pp.35-52
    • /
    • 2017
  • Interest and demand in heavy cargo logistics is increasing and becoming more diverse as economic scales have expanded and manufacturing activity has increased. Although cargo moves via maritime and/or land transportation, there is currently insufficient research on the actual condition of heavy cargo logistics. The purpose of this study is to carry out an in-depth analysis of heavy cargo laws, systems, logistics patterns, and current transportation status. By proposing measures to solve existing problems, this study aims to make an important and ongoing contribution to the scarcely studied field of heavy cargo logistics. The result of regression analysis on the main seven factors show that transportation frequency and law/system structure have a positive effect on working conditions. Furthermore, the result of correlation analysis on the main seven factors show that the cargo weight variable is highly positively correlated with cargo size. Also, the working conditions variable is highly positively correlated with the law/system structure. Detailed proposal measures to solve existing problems are summarized as follows. First, it is necessary to establish a clear concept of heavy cargo as numerous existing definitions differ. Second, laws and provisions relating to maritime and land transportation of heavy cargo need to be established and consolidated as current applicable legislation is insufficient. Third, the classification system for heavy cargo transportation needs improvement. Fourth, it is necessary to improve transportation performance statistics and the aggregate criteria system. Finally, the management system of heavy cargo also needs improvement.

A Study on the Optimum Design of Cargo Tank for the LPG Carriers Considering Fabrication Cost (건조비를 고려한 LPG 운반선 화물창의 최적설계에 관한 연구)

  • Shin, Sang-Hoon;Hwang, Sun-Bok;Ko, Dae-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.178-182
    • /
    • 2011
  • Generally in order to reduce the steel weight of stiffened plate, stiffener spaces tend to be narrow and the plate gets thin. However, it will involve more fabrication cost because it can lead to the increase of welding length and the number of structural members. In the yard, the design which is able to reduce the total fabrication cost is needed, although it requires more steel weight. The purpose of this study is to find optimum stiffener spaces to minimize the fabrication cost for the cargo tank of LPG Carriers. Global optimization methods such as ES(Evolution Strategy) and GA(Genetic Algorithm) are introduced to find a global optimum solution and the sum of steel material cost and labor cost is selected as main objective function. Convergence degree of both methods in according to the size of searching population is examined and an efficient size is investigated. In order to verify the necessity of the optimum design based on the cost, minimum weight design and minimum cost design are carried out.

A Study on the Buckling Strength of the Skirt Structure in the Spherical LNG Carriers (구형 LNG운반선의 탱크지지 구조인 스커트의 좌굴강도에 대한 연구)

  • Kim, Ul-Nyeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.393-405
    • /
    • 2017
  • This paper deals with the buckling strength of the skirt structure in the spherical LNG carriers. The spherical cargo tank systems consist of spherical tank, skirt, tank cover, pump tower, etc. The skirt supports the spherical cargo tank and is connected with ship hull structure. It is designed to act as a thermal brake between the tank and the hull structure by reducing the thermal conduction from the tank to the supporting structure. It is built up of three parts, upper aluminum part, middle stainless steel part and lower carbon steel part. The 150K spherical LNG carrier was designed and carried out the strength verification under Classification Societies Rule. The design loads due to acceleration, thermal distribution, self-weight and cargo weight were estimated considering requirements of the Class Rule and numerical simulation analyses. Based on the obtained design loads and experienced project data, the initial structure scantling was carried out. To verify the structural integrity, theoretical and numerical analyses were carried out and strength was evaluated aspect of buckling capacity. The results by LR and DNV design code are shown and discussed.

The package loading equipment development cutting both ends in the process of packaging lumber for improving the working environments (작업환경개선을 위한 목재포장공정에 있어서의 양끝절단포장적재장치 개발)

  • Kang, Ji-Ho;Hong, Dong-Pyo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.1
    • /
    • pp.135-142
    • /
    • 2006
  • The package loading process of tile lumbering industry is an operation that after a pair of workers binds three or six lumber into a unit and cut the both ends of the lumber, carry and pack and load the weight cargo of 30-50kg. The package loading process causes lots of noise and wood dust when the lumber are cut and brings about the main cause of the musculoskeletal disorder when workers carry the heavy goods. Therefore, we developed the monolithic package loading equipment cutting both ends that is enable to improve the working method and environments of the existing package loading process. The noise and wood dust were reduced by developing the device and the main cause of shirking duties on working place was solved by preventing the musculoskeletal disorder and improving the working environments as excluding the work of carrying heavy goods.

An Experimental Study on Mechanical Properties and Failure Behavior of Plywood (Plywood의 기계적 특성 및 파손 거동 분석에 관한 실험적 연구)

  • Cha, Seung-Joo;Kim, Jeong-Dae;Kim, Jeong-Hyeon;Oh, Hoon-Kyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.335-342
    • /
    • 2019
  • The objective of this study is to analyze the mechanical properties of plywood used as a thermal insulating material for LNG CCS (Liquefied Natural Gas, Cargo Containment System). It is created by bonding an odd number of parallel and perpendicular direction for preventing contraction and expansion of wood. Also plywood is widely used as LNG CCS insulating material because of its durability, light weight and high stiffness. Since LNG CCS is loaded with liquid cargo, the impact load by sloshing during operation and the wide temperature range (room temperature, low temperature, cryogenic temperature) exposed during loading, unloading should be considered. The thickness of the plywood which is used for the membrane type MARKIII was selected as the thickness of the test specimen. In this present study, plywood is analyzed by the fracture behavior and mechanical properties of plywood by temperature and grain direction. In addition, it is necessary to analyze the fracture shape and predict the fracture strain by using regression model because the critical load may cause cracks inside the tank, which may affect the leakage of cryogenic liquid.

A Study on the Performance Elevation Methods of Next Generation Railway Freight Vehicles (차세대 철도화물차량의 성능향상방안에 관한 연구)

  • Ham Y.S.;Hong J.S.;Oh T.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.351-354
    • /
    • 2005
  • Research purpose of this project is intending Maintenance Free of freight car and speed up of freight train. At goods transport as heightening traveling by ship speed of freight train shortening raise railway share of physical distribution and stand on tiptoe to Northeast Asia physical distribution main country to contribute expect. This paper is the performance elevation methods of next generation railway freight vehicles.

  • PDF

Development of The High-Speed Container Handling System with On-Chassis Type (온-섀시 방식의 고속 컨테이너 하역시스템 개발)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.323-332
    • /
    • 2020
  • Container ships are getting bigger due to the increase in global cargo volume. Therefore, it needs to increase the speed for loading and unloading of containers at the quayside. Traditionally, only one container is handled at once at the quayside due to it's heavy weight. In this paper, a method of handling multiple containers at once using chassis is proposed. Proposed system is consists of a container chassis that can hold three layer stacked containers, transport system that can handle the container chassis including rail-based or vehicle-based roll-on roll-off systems, and dedicated crane system. The conceptual design of crane and transport system that can handle three stacked containers is carried out and verified. The proposed system can be adopted for real quayside container handling system with high speed.

A Study on Docking Analysis for Conventional LNGC (Conventional LNGC의 도킹 해석에 관한 연구)

  • Choi, Joong-Hyo;Park, Jae-Hyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.10-15
    • /
    • 2008
  • The proper docking block arrangement, loading condition and structural reinforcement are required to ensure structural safety of ship, when she is in re-docking and launching for inspection or repair. The large reaction force due to narrow bottom tangent area, heavy weight and ballast loading are occurred at aft body and fore body of ship. Especially, in case of LNGC, the strength evaluation is necessary for cargo hold areas including mid-body because tank hydro test is performed in dry-dock. The analysis results and experiences to confirm structural safety for docking of conventional LNGC$(138K{\sim}151.7K)$ are introduced in this paper.

  • PDF

The Development of Multi-Blades I.G.G Blower for Shipbuilding & Ocean (조선/해양용 다단 블레이드 I.G.G 블로워의 개발)

  • Jang, Sung-Cheol;Park, Rae-Bang;Hur, Nam-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.446-450
    • /
    • 2012
  • I.G.G is abbreviation for inert gas generator high temperature in cargo tank it desulfurize, exhaust and froze the gas that combined brimstone element and soot, then supply inert gas by blower and mack tank inside incombustible range this is equipment that nip in the bud the explosion. The blower for suppling inactivated gas has big impeller with heavy weight to achieve the high pressure, it causes a delay for first operation time and too much load is delivered to motor, total destruction by fire of motor is happen frequently. On this research, we will reduce the size and weight of impeller and install it with several stage, it makes an effect for reducing the first operation time. We also intend to contribute to efficient I.G.G. blower design by research a flow rate and pressure specialty from the diameter of impeller number of blades and size of casing.