• Title/Summary/Keyword: Heating methods

Search Result 1,007, Processing Time 0.029 seconds

Study on the Structure of Expanded Rice with Deep-Frying for Salyeotgangjung (유탕처리된 쌀엿강정용 팽화쌀의 조직학적 연구)

  • Kim, Myoung-Ae
    • Journal of the Korean Society of Food Culture
    • /
    • v.16 no.4
    • /
    • pp.323-329
    • /
    • 2001
  • This study was carried out to observe the character change of expanded rice grain for Salyeotgangjung at various gelatinization methods. The expansion and structure change of rice grain was different at conditions of heating methods and gelatinization, respectively. The boiling showed good expansion compared to other heating methods by electric rice-cooker, pressure cooker, and steam cooker. There was not difference in expansion of rice grain between the boiling and the boiling after soaking. Rice grain did greatly expand as the boiling time was extended. But the quality for Salyeotgangjung would be not good because of crack of expanded rice grain surface when the boiling time was too long.

  • PDF

Effect of Pressing Methods on the Quality of Grape Juices (압착방법별 포도 착즙액의 품질특성)

  • 최희돈;김성수;김경탁;홍희도;김상희
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.3
    • /
    • pp.203-208
    • /
    • 2002
  • The physicochemical and sensory properties of Campbell Early and Gerbong juices prepared by various pressing methods were studied. The yields of these juices by mixed method were 83.5% and 87.5%, the highest value of various pressing methods. And soluble solids and amino nitrogens of them decreased as heating temperature increased and was lowest when mixed method was performed. Titratable acidities of Campbell Early juice was 0.86∼1.00%, higher than that of Gerbong juice, 0.60~o.69%. Also the strength of astringent taste and sour taste of Campbell Early and Gerbong juice increased as heating temperature increased, and increased strength of these tastes gave good sensory evaluation to grape juices.

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

Curvature Region Analysis for Application of Plates Forming (곡판 가공방법 적용을 위한 곡률면적 분석)

  • Kim, Chan Suk;Son, Seung Hyeok;Shin, Jong Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.70-76
    • /
    • 2015
  • The ship hull is accomplished by assembling various curved surfaces. There are numerous existing methods for ship hull processing, which need certain appropriate processing methods to enable it to be more efficient. The curved hull plates can be divided into convex region and saddle region. It is common to use line heating method to form a saddle region, when it comes to a convex region, it will be triangle heating method to be utilized. A precise analysis for curvature domain is required for the application of proper processing method. There exist various problems on existing calculation methods of curvature domain. Therefore, a more powerful method is demanded to it more accurately. In this study, a method called Dual Contouring is applied to extract curved surfaces, which is able to improve accuracy of extracted area. Based on all above, a best-suited heat processing method should be selected.

Thermal Decomposition Behavior and Durability Evaluation of Thermotropic Liquid Crystalline Polymers

  • Shin, Sang-Mi;Kim, Seong-Hun;Song, Jun-Kwang
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2009
  • The thermal decomposition behavior and degradation characteristics off our different thermotropic liquid crystalline polymers (TLCPs) were studied. The thermal decomposition behavior was determined by means of thermogravimetric analysis (TGA) at different heating rates in nitrogen and air. The order of the thermal stability was as follows: multi-aromatic polyester > hydroxybenzoic acid (HBA)/hydroxynaphthoic acid (HNA) copolyester > HNA/hydroxyl acetaniline (HAA)/terephthalic acid (TA) copolyester > HBA/Poly(ethylene terephthalate) (PET) copolyester. The activation energies of the thermal degradation were calculated by four multiple heating rate methods: Flynn-Wall, Friedman, Kissinger, and Kim-Park. The Flynn-Wall and Kim-Park methods were the most suitable methods to calculate the activation energy. Samples were exposed to an accelerated degradation test (ADT), under fixed conditions of heat ($63{\pm}3^{\circ}C$), humidity ($30{\pm}4%$) and Xenon arc radiation ($1.10\;W/m^2$), and the changes in surface morphology and color difference with time were determined. The TLCPs decomposed, discolored and cracked upon exposure to ultraviolet radiation.

Heating and Cooling System for Utilization of Surplus Air Thermal Energy in Greenhouse and its Control Logic

  • Yang, Seung-Hwan;Lee, Chun-Gu;Lee, Won-Kyu;Ashtiani, Alireza Araghi;Kim, Joon-Yong;Lee, Sang-Deok;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.19-27
    • /
    • 2012
  • Purpose: Utilizing air thermal energy during over-heated time in the greenhouse is a necessary component to save greenhouse heating costs for nighttime. However, there is no practical way to implement the related principles. Methods: In this study, a heating and cooling system which utilizes the surplus air thermal energy in a greenhouse was developed. Available air thermal energy and heating load for this experimental glasshouse were estimated based on temperature conditions of the plant growth and weather data. Results: Estimated values were 400 MJ/day for maximum surplus air thermal energy and 340 MJ/day for maximum heating energy which were target values of the design as well. The system consists of a heat pump, fan-coil units and heat storage tanks which are divided into low and high temperature tanks. Moreover, a new control logic was developed for surplus air thermal energy utilization. Conclusions: This paper explains the details of conceptual design process of the system. Results of test operations showed that the developed system performed the recovery and supply of the thermal energy according to design purposes.

Effect of Microwave and High-temperature Heating Methods on Contaminates Removal from Oil-contaminated Soil by Heat Treatment (유류오염토양의 열처리에서 micro파와 고온발열체 방법이 오염제거에 미치는 영향)

  • Ha, Sang-An;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.46-52
    • /
    • 2014
  • This study was conducted to observe the removal efficiency of oil-contaminated soil by various tests using microwaves and high-temperature heating elements. The water content was measured with the treatment amount, which was lowered to 300g in a relatively short amount of time. The treatment rate of TPH(Total Petroleum Hydrocarbons) showed the highest value with 70.1% when the SiC-activated carbon heating element was at 4 kW/kg, compared to the SiC heating element used alone. In particular, the higher electric power became, the higher treatment rate became, except at 3 kW. In the case of the heating element made by the fusion of SiC and activated carbon, the internal temperature exceeded $300^{\circ}C$ and again fell when it was treated at 4 kW for about 2 minutes. Then, after about 8 minutes, it rose again. On the basis of such results, the energy content necessary for the sample was calculated according to the electric power of microwaves, and tthe constant of TPH treatment was measured by tests on the treatment characteristics of oil-contaminated soil.

Three cases of postpartum low back pain patients treated by heating-conduction acupuncture therapy (전열침을 적용한 산후 요통환자 치험 3례)

  • Lim, Gwang-Mook;Wi, Dae-Yong;Ko, Youn-Seok;Lee, Eun-Hee;Ban, Ji-Hye;Lee, Ah-Young
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.7 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • Objectives : The purpose of this study is to evaluate the effect of the heating-conduction acupuncture therapy on the postpartum low back pain patients. Methods : Heating-conduction acupuncture therapy was administered three and four times on three postpartum low back pain patients. The improvement of clinical symptoms was evaluated by SF-MPQ(short form-McGill pain questionnarie), VAS(visual analogue scale) and ODI(oswestry disability index). Results : After treatment, each three patients' SF-MPQ, VAS and ODI score reduced respectively. Conclusions : Heating-conduction acupuncture therapy for postpartum low back pain patients was effective. Although this cases presented valuable result, further research is encouraged to confirm the effectiveness of this treatment.

  • PDF

Combinational Effect of Moist Heating and Gamma Irradiation on The Inactivation of Trypsin Inhibitory Activity in Soybean

  • Felipe, Penelope;Yang, Yun-Hyoung;Lee, Jeong-Hee;Sok, Dai-Eun;Kim, Hyoung-Chin;Yoon, Won-Kee;Kim, Hwan-Mook;Kim, Mee-Ree
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.732-737
    • /
    • 2005
  • The combinational effect of gamma irradiation and moist heating on the trypsin inhibitor activity (TIA) in soaked and dried soybeans was evaluated by measuring the inhibition using N-benzoyl-DL-arginine-p-nitroanilide (BAPNA) as substrate. Gamma irradiation significantly decreased the TIA level in soybean at doses above 5 kGy, and the $ID_{50}$ (the gamma irradiation dose required to reach 50% inhibition) value for TIA was 13.53 kGy. Soaking prior to gamma irradiation significantly lowered the $ID_{50}$ to 8.44 kGy, and the soaking process enhanced the efficiency to inactivate TIA by as much as 48%. When soaking prior to gamma irradiation was followed by subsequent mild heating ($60^{\circ}C$) process, the $IT_{50}$ (heating time required to reach the 50% inhibition of TIA) value at even 1 kGy (5.28 min) was greatly reduced by over 50% compared to the level for the no-soaking process. In addition, the activation energy of soaking prior to gamma irradiation at 1 kGy was 2.45 kcal/mole, which was also about 50% lower than the 5.10 kcal/mole of dried soybean gamma-irradiated. Based on these results, soaking prior to gamma irradiation is an effective method for TIA inhibition. Furthermore, a combination of two or more processing methods such as soaking, heating and gamma irradiation is much more effective than any single processing method.

Low Temperature Hermetic Packaging using Localized Beating (부분 가열을 이용한 저온 Hermetic 패키징)

  • 심영대;김영일;신규호;좌성훈;문창렬;김용준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1033-1036
    • /
    • 2002
  • Wafer bonding methods such as fusion and anodic bonding suffer from high temperature treatment, long processing time, and possible damage to the micro-scale sensor or actuators. In the localized bonding process, beating was conducted locally while the whole wafer is maintained at a relatively low temperature. But previous research of localized heating has some problems, such as non-uniform soldering due to non-uniform heating and micro crack formation on the glass capsule by thermal stress effect. To address this non-uniformity problem, a new heater configuration is being proposed. By keeping several points on the heater strip at calculated and constant potential, more uniform heating, hence more reliable wafer bonding could be achieved. The proposed scheme has been successfully demonstrated, and the result shows that it will be very useful in hermetic packaging. Less than 0.2 ㎫ contact Pressure were used for bonding with 150 ㎃ current input for 50${\mu}{\textrm}{m}$ width, 2${\mu}{\textrm}{m}$ height and 8mm $\times$ 8mm, 5mm$\times$5mm, 3mm $\times$ 3mm sized phosphorus-doped poly-silicon micro heater. The temperature can be raised at the bonding region to 80$0^{\circ}C$, and it was enough to achieve a strong and reliable bonding in 3minutes. The IR camera test results show improved uniformity in heat distribution compared with conventional micro heaters. For gross leak check, IPA (Isopropanol Alcohol) was used. Since IPA has better wetability than water, it can easily penetrate small openings, and is more suitable for gross leak check. The pass ratio of bonded dies was 70%, for conventional localized heating, and 85% for newly developed FP scheme. The bonding strength was more than 30㎫ for FP scheme packaging, which shows that FP scheme can be a good candidate for micro scale hermetic packaging.

  • PDF