Browse > Article

Thermal Decomposition Behavior and Durability Evaluation of Thermotropic Liquid Crystalline Polymers  

Shin, Sang-Mi (Department of Fiber and Polymer Engineering, Hanyang University)
Kim, Seong-Hun (Department of Fiber and Polymer Engineering, Hanyang University)
Song, Jun-Kwang (Department of Material Analysis, Center for Reliability Technical, Korea Testing Laboratory)
Publication Information
Macromolecular Research / v.17, no.3, 2009 , pp. 149-155 More about this Journal
Abstract
The thermal decomposition behavior and degradation characteristics off our different thermotropic liquid crystalline polymers (TLCPs) were studied. The thermal decomposition behavior was determined by means of thermogravimetric analysis (TGA) at different heating rates in nitrogen and air. The order of the thermal stability was as follows: multi-aromatic polyester > hydroxybenzoic acid (HBA)/hydroxynaphthoic acid (HNA) copolyester > HNA/hydroxyl acetaniline (HAA)/terephthalic acid (TA) copolyester > HBA/Poly(ethylene terephthalate) (PET) copolyester. The activation energies of the thermal degradation were calculated by four multiple heating rate methods: Flynn-Wall, Friedman, Kissinger, and Kim-Park. The Flynn-Wall and Kim-Park methods were the most suitable methods to calculate the activation energy. Samples were exposed to an accelerated degradation test (ADT), under fixed conditions of heat ($63{\pm}3^{\circ}C$), humidity ($30{\pm}4%$) and Xenon arc radiation ($1.10\;W/m^2$), and the changes in surface morphology and color difference with time were determined. The TLCPs decomposed, discolored and cracked upon exposure to ultraviolet radiation.
Keywords
thermotropic liquid crystal polymer (TLCP); thermal decomposition; thermogravimetric analysis (TGA); durability; degradation;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 D. Dutta, A. Fruitwala, A. Kohli, and R. A. Weiss, Polym. Eng. Sci., 30, 1005 (1990)   DOI
2 S. H. Kim and S. W. Kang, Fibers and Polymers, 1, 83 (2000)   DOI   ScienceOn
3 K. K. Yang, X. L. Wang, Y. Z. Wang, B. Wu, Y. D. Jin, and B. Yang, Eur. Polym. J., 39, 1567 (2003)   DOI   ScienceOn
4 J. H. Flynn and L. A. Wall, Polym. Lett., 4, 323 (1966)   DOI
5 H. E. Kissinger, Anal. Chem., 29, 1702 (1957)   DOI
6 X. Jin and T. S. Chung, J. Appl. Polym. Sci., 73, 195 (1999)
7 J. O. Song, M. Y. Jeon, and C. K. Kim, Macromol. Res., 15, 640 (2007)   DOI
8 H. L. Friedman, J. Polym. Sci. Part C, 6, 183 (1964)
9 J. Y. Kim, S. W. Kang, S. H. Kim, B. C. Kim, K. B. Shim, and J. G. Lee, Macromol. Res., 13, 19 (2005)   DOI
10 J. K. Pandey, K. R. Reddy, A. P. Kumar, and R. P. Singh, Polym. Degrad. Stabil., 29, 508 (2005)
11 J. Y. Kim, E. S. Seo, and S. H. Kim, Macromol. Res., 11, 62 (2003)   DOI   ScienceOn
12 D. Newton and R. Bromley, Practical reliability engineering, John Wiley & Sons Ltd., Chichester, 2002
13 Z. S. Petrovic and Z. Z. Zavargo, J. Appl. Polym. Sci., 32, 4353 (1986)   DOI   ScienceOn
14 T. Das, A. K. Banthia, B. Adhikari, H. W. Jeong, C. S. Ha, and S. Alam, Macromol. Res., 14, 261 (2006)   DOI
15 V. A. Alvarez, R. A. Ruseckaite, and A. Vazquez, J. Appl. Polym. Sci., 90, 3157 (2003)   DOI   ScienceOn
16 X. G. Li and M. R. Huang, Polym. Int., 46, 289 (1998)   DOI   ScienceOn
17 T. S. Chung, G. W. Calundann, and A. J. East, Encyclopedia of Engineering Materials, 2, 625 (1987)
18 S. Kim and J. K. Park, Thermochim. Acta, 264, 137 (1995)   DOI   ScienceOn
19 G. Kiss, Polym. Eng. Sci., 27, 410 (1987)   DOI   ScienceOn
20 C. G. Im, J. Y. Kim, and S. H. Kim, Polymer (Korea), 29, 508 (2005)
21 X. G. Li, J. Appl. Polym. Sci., 74, 2016 (1999)   DOI   ScienceOn