Thermal Decomposition Behavior and Durability Evaluation of Thermotropic Liquid Crystalline Polymers

  • Shin, Sang-Mi (Department of Fiber and Polymer Engineering, Hanyang University) ;
  • Kim, Seong-Hun (Department of Fiber and Polymer Engineering, Hanyang University) ;
  • Song, Jun-Kwang (Department of Material Analysis, Center for Reliability Technical, Korea Testing Laboratory)
  • Published : 2009.03.25

Abstract

The thermal decomposition behavior and degradation characteristics off our different thermotropic liquid crystalline polymers (TLCPs) were studied. The thermal decomposition behavior was determined by means of thermogravimetric analysis (TGA) at different heating rates in nitrogen and air. The order of the thermal stability was as follows: multi-aromatic polyester > hydroxybenzoic acid (HBA)/hydroxynaphthoic acid (HNA) copolyester > HNA/hydroxyl acetaniline (HAA)/terephthalic acid (TA) copolyester > HBA/Poly(ethylene terephthalate) (PET) copolyester. The activation energies of the thermal degradation were calculated by four multiple heating rate methods: Flynn-Wall, Friedman, Kissinger, and Kim-Park. The Flynn-Wall and Kim-Park methods were the most suitable methods to calculate the activation energy. Samples were exposed to an accelerated degradation test (ADT), under fixed conditions of heat ($63{\pm}3^{\circ}C$), humidity ($30{\pm}4%$) and Xenon arc radiation ($1.10\;W/m^2$), and the changes in surface morphology and color difference with time were determined. The TLCPs decomposed, discolored and cracked upon exposure to ultraviolet radiation.

Keywords

References

  1. D. Dutta, A. Fruitwala, A. Kohli, and R. A. Weiss, Polym. Eng. Sci., 30, 1005 (1990) https://doi.org/10.1002/pen.760301704
  2. S. H. Kim and S. W. Kang, Fibers and Polymers, 1, 83 (2000) https://doi.org/10.1007/BF02875190
  3. G. Kiss, Polym. Eng. Sci., 27, 410 (1987) https://doi.org/10.1002/pen.760270606
  4. J. Y. Kim, S. W. Kang, S. H. Kim, B. C. Kim, K. B. Shim, and J. G. Lee, Macromol. Res., 13, 19 (2005) https://doi.org/10.1007/BF03219011
  5. T. S. Chung, G. W. Calundann, and A. J. East, Encyclopedia of Engineering Materials, 2, 625 (1987)
  6. J. Y. Kim, E. S. Seo, and S. H. Kim, Macromol. Res., 11, 62 (2003) https://doi.org/10.1007/BF03218279
  7. T. Das, A. K. Banthia, B. Adhikari, H. W. Jeong, C. S. Ha, and S. Alam, Macromol. Res., 14, 261 (2006) https://doi.org/10.1007/BF03219081
  8. C. G. Im, J. Y. Kim, and S. H. Kim, Polymer (Korea), 29, 508 (2005)
  9. J. K. Pandey, K. R. Reddy, A. P. Kumar, and R. P. Singh, Polym. Degrad. Stabil., 29, 508 (2005)
  10. D. Newton and R. Bromley, Practical reliability engineering, John Wiley & Sons Ltd., Chichester, 2002
  11. X. G. Li and M. R. Huang, Polym. Int., 46, 289 (1998) https://doi.org/10.1002/(SICI)1097-0126(199808)46:4<289::AID-PI993>3.0.CO;2-O
  12. X. G. Li, J. Appl. Polym. Sci., 74, 2016 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991121)74:8<2016::AID-APP17>3.0.CO;2-T
  13. Z. S. Petrovic and Z. Z. Zavargo, J. Appl. Polym. Sci., 32, 4353 (1986) https://doi.org/10.1002/app.1986.070320406
  14. K. K. Yang, X. L. Wang, Y. Z. Wang, B. Wu, Y. D. Jin, and B. Yang, Eur. Polym. J., 39, 1567 (2003) https://doi.org/10.1016/S0014-3057(03)00052-1
  15. J. H. Flynn and L. A. Wall, Polym. Lett., 4, 323 (1966) https://doi.org/10.1002/pol.1966.110040504
  16. H. L. Friedman, J. Polym. Sci. Part C, 6, 183 (1964)
  17. H. E. Kissinger, Anal. Chem., 29, 1702 (1957) https://doi.org/10.1021/ac60131a045
  18. S. Kim and J. K. Park, Thermochim. Acta, 264, 137 (1995) https://doi.org/10.1016/0040-6031(95)02316-T
  19. V. A. Alvarez, R. A. Ruseckaite, and A. Vazquez, J. Appl. Polym. Sci., 90, 3157 (2003) https://doi.org/10.1002/app.13071
  20. X. Jin and T. S. Chung, J. Appl. Polym. Sci., 73, 195 (1999)
  21. J. O. Song, M. Y. Jeon, and C. K. Kim, Macromol. Res., 15, 640 (2007) https://doi.org/10.1007/BF03218944