• Title/Summary/Keyword: Heating Rate

Search Result 1,918, Processing Time 0.029 seconds

A study on the environmental load of office buildings in Seoul (서울지역 사무소 건물의 환경부하에 관한 연구)

  • 이상형;이윤규;양관섭;안태경;이승언;박효순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.244-249
    • /
    • 1999
  • This study is to examine the emission rate of $CO_2$gas as the environmental load in office buildings. After the investigation of monthly consumption of each energy source(electricity and natural gas), it is analyzed that the $CO_2$emission rate of 34 office buildings surveyed is 22.4kg-$c/m^2$.year, which consists of 17.5kg-$c/m^2$.year by consuming electricity, and 4.9kg-$c/m^2$.year by consuming natural gas. And the $CO_2$emission rate of each load in those buildings consists of 68% emitted by general electricity, 16% by cooling load and 16% by heating load. It is also proposed that the $CO_2$emission rate of cooling and heating load is profoundly pertinent to the variation of outdoor temperature.

  • PDF

Evaluation of Spalling Property and Water Vapor Pressure of Concrete with Heating Rate (가열 속도에 따른 콘크리트의 폭렬 특성 및 내부 수증기압력 평가)

  • Choe, Gyeong-Cheol;Lee, Tae-Gyu;Nam, Jeong-Soo;Park, Byung-Keun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.605-612
    • /
    • 2012
  • Spalling of concrete occurs due to vapor pressure ignited explosion, temperature difference across a section, and combination of these factors. Factors affecting spalling can be classified into internal and external factors such as material property and environmental condition, respectively, have to be considered to precisely understand spalling behavior. An external environmental factor such as differences in heating rate cause internal humidity cohesion and different vapor pressure behavior. Therefore, spalling property, vapor pressure and thermal strain property were measured from concrete with compressive strengths of 30 MPa, 50 MPa, 70 MPa, 90 MPa, and 110 MPa, applied with ISO-834 standard heating curve of $1^{\circ}C/min$ heating rate. The experimental results showed that spalling occurred when rapid heating condition was applied. Also, when concrete strength was higher, the more cross section loss from spalling occurred. Also, spalling property is influenced by first pressure cancellation effect of thermal expansion caused by vapor pressure and heating rates.

Performance Analysis of the Wind Power Heat Generation Drum Using Fluid Frictional Energy (유체마찰에너지를 이용한 풍력열발생조의 성능 분석)

  • Kim, Yeong-Jung;Yu, Yeong-Seon;Gang, Geum-Chun;Baek, Lee;Yun, Jin-Ha;Lee, Geon-Jung
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.263-270
    • /
    • 2001
  • This study was conducted in order to develop wind-water heating system where frictional heat is creased between the rotor and working fluid when they are rotating in the cylindrical heat generator. The wind-water heating system is composed of rotor, stator, working fluid, motor, inverter and heat generation tank. Instead of wind turbine, we have used an electrical motor of 30㎾ to rotate the rotor in this system. Two working fluids and six levels of rotor rpm were tested to quantify heat amounts generated by the system. Generally, as motor rpm goes up heat amount increases that we have expected. At the same rpm, viscous fluid showed up better performance than the water, generating more heat by 10$\^{C}$ difference. The greatest heat amount of 31,500kJ/h was obtained when the system constantly drained out the hot water of at the flow rate of 500ℓ/h. Power consumption rate of the motor was measured by thee phase electric power meter where the largest power consumption rate was 14㎾ when motor rpm was 600 and gained heat was 31,500kJ/h, that indicated total thermal efficiency of the wind power water heating system was 62%.

  • PDF

Characteristics of Temperature Distribution of Wall, Floor, Air and Hot Water by Burying the Excel Pipe on the Floor and Wall of a Container House (컨테이너하우스의 바닥과 벽면에 엑셀파이프 매설에 의한 벽면, 바닥, 공기, 온수의 온도분포 특성)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.94-100
    • /
    • 2022
  • A study was conducted to significantly increase the heat transfer area by simultaneously burying the excel pipe in the floor and wall of a container house, thereby greatly reducing the initial heating time. In addition, a small hot water boiler suitable for the heating load of a small container house with a maximum area of 6 m2 was studied. A wall-mounted hot water boiler was developed as a result of the study. When a hot water boiler is installed outdoors for heating, heat radiation energy is lost in winter from the hot water boiler and hot water pipe due to the low temperature. We propose an approach through which the energy loss was greatly reduced and the temperature of hot water increased in proportion to the operating time. Moreover, as the mass flow rate of the hot water flowing inside the excel pipe increased, the temperature of the hot water decreased. The temperature of the wall and floor surfaces of the container house increased in proportion to the increase in the mass flow rate of hot water flowing inside the excel tube. Natural convection heat transfer was realized from the wall and floor surfaces of the container house, and the heat transfer area was increased by a factor of 3 with respect to heat transfer area limited to the floor by the existing hot water panel. As a result, the initial temperature increase rate was much higher because of the larger heat transfer area.

Effect of Stabilization Conditions on the Microstructure and Electrochemical Properties of Melt-blown Graphite Fibers Prepared from NMP (NMP로부터 제조된 Melt-blown흑연섬유의 안정화조건에 따른 미세구조와 전기화학적 특성)

  • Kim Chan;Yang Kap Seung;Ko Jang Myoun;Park Sang Hee;Park Ho Chul;Kim Young-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.104-108
    • /
    • 2001
  • Naphthalene derived mesophase pitch WP) was spun into short fibers by using melt-blown technology. The pitch fibers oxidative stabilization were carried out heating rates of $2^{\circ}C/min,\;5^{\circ}C/min\;and\; 10^{\circ}/min$. The heating rate was a key factor to maximate the capacity of the Li-ion secondary battery through controlling the morphology of the graphitized fiber. The diameters of the melt-blown fibers prepared were in the range of $4{\mu}m\~16{\mu}m$ with functions of air jet speed, air temperature and the temperature of the nozzle. The graphitized fibers of $10{\mu}m$ diameters showed various morphological structure with heating rate of the stabilization. Radial, radial-random and skin-core cross-sectional structure of the fibers were observed at the respective heating rate of $2^{\circ}C/min\;5^{\circ}C/min\;and\;10^{\circ}C/min$. Most crystalline structure of graphite was obtained from the fiber stabilized at heating rate of $10^{\circ}C/min$ exhibiting the best anode performance with 400 mAh/g of capacitance and $96.8\%$ of charge/discharge efficiency.

Effects of local body heating and cooling on thermogram analysis of the extremity with hot pack (핫팩을 이용한 인체의 부위별 가온과 제거가 사지부 피부 열화상도에 미치는 영향)

  • Kim, Soyoung;Hong, Kyunghi
    • Korean Journal of Human Ecology
    • /
    • v.23 no.6
    • /
    • pp.1205-1215
    • /
    • 2014
  • The purpose of this study was to investigate the effect of local heating and cooling of various body parts on the skin temperature of the exposed extremities including neck. Hot pack was used to warm up the body of seven participants for 15 minutes and it was removed as the temperature of the hot pack decreased after 15minutes of warming. Thermograms of body surface with and without hot pack were analyzed intensively to observe the efficiency of the local heating of shoulder, abdomen, back waist, and foot on the skin temperature of ten area of the subjects' body. The results indicated that the absolute skin temperature of front upper arm and thigh was significantly higher depending on the area of heating, especially, in case of abdomen and foot heating, which was not observed at the back of the body. The rate of skin temperature of extremities such as finger, palm and foot was significantly different depending on the body area of local heating. Generally, it was found that back waist heating was not efficient to warm up and maintain the skin temperature of the body after removing the hot pack.

Development of Formulas to Predict Deformations in Plate by Line Heating Method (선상가열법에 의한 강판의 변형 예측식 개발)

  • Lee, Joo-Sung;Lee, Joung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.83-87
    • /
    • 2008
  • Although a great deal of research has been carried out to solve the plate forming problem and to improve the effectiveness and productivity of the plate forming process, no practical way of automating the plate forming process has been proposed yet. Since characteristics of heating machines may vary, it is necessary to investigate the thermal deformation characteristics of the heating machine that will be used in the automation system its characteristics may be modified as new information about thermal deformation by heating becomes available. In this paper, experiments for line heating have been carried out to calculate the formula of predicting thermal deformation due to line heating with varying affecting parameters, and numerical study has been carried out to produce data beyond the range where a line heating test is impractical. Formulas of predicting transverse distortion and shrinkage have been proposed and derived, based on the present experimental and numerical works. This paper also illustrates how the formula has been modified as new experimental data are added.

A Study on Improved Heating Performance of an Apartment Housing Unit (공동주택 세대별 난방 성능 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Most hot water heating valves for apartments are constant-flow types, which limit the flow rate through an individual household for even distribution of heating water to other households. The constant-flow type is implemented by an on-off control. As a result, heating water is supplied intermittently and hence, indoor air temperature also fluctuates. Returning water temperature is also high, which reduces energy efficiency. To implement continuous feedback control, the indoor temperature dynamics was simulated to fit a measured temperature history by a state-of-the-art physical model. From the model, it was found that the most important disturbance is outdoor temperature and its effect on indoor temperature lasts about an hour. To cope with the slow response and the significant disturbance, a prediction control with proportional feedback is proposed. The control was found to be successful in implementing continuous heating water flow and improved indoor temperature control.

Change in Microstructure and Coating Layer of Al-Si Coated Steel after Conductive Heating (Al-Si 도금강의 통전 가열에 따른 미세조직과 도금층 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.107-115
    • /
    • 2021
  • Al-Si coated boron steel has been widely used as commercial hot stamping steel. When the steel is heated at 900~930℃ for 5 min in an electric furnace, thickness of the coating layer increases as a consequence of formation of intermetallic compounds and diffusion layer. The diffusion layer plays an important roll in blunting the propagation of crack from coating layer to base steel. Change in microstructure and coating layer of Al-Si coated boron steel after conductive heating with higher heating rate than electric furnace has been investigated in this study. Conductive-heated steel showed the martensitic structure with vickers hardness of 505~567. Both intermetallic compounds in coating layer and diffusion layer were not observed in conductive-heated steel due to rapid heating. It has been found that the conductive-heating consisting of rapid heating to 550℃ which is lower than melting point of Al-Si coating layer, slower heating to 900℃, and then 1 min holding at 900℃ is effective in forming intermetallic compound in coating layer and diffusion layer.

Performance Analysis of an Earth Coupled Heat Pump System Operated by an Engine(II) - Performance Analysis of a Vapour Compression type Compact Heat Pump - (엔진구동 지열 열펌프의 성능 분석(II) - 소형 증기압축식 열펌프의 성능 분석 -)

  • 김영복;송대빈;손재길
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.501-512
    • /
    • 1999
  • In this study, the coefficient of performance of a vapour compression heat pump system was analyzed for the evaluation of the heat pump performance. A water-to-air heat pump was assembled and tested by changing the level of the compressor driving speed and the air mass flow rate during air heating process. The coefficient of performance for air heating was 2.6~3.8 and that for water cooling was 1.0~1.4. The coefficient of performance was not depending on the levels of the compressor driving speed or levels of the air mass flow rate, but on the temperature of the air and water. The coefficient of performance for air heating increased by about 0.2 with the water temperature increasing by 1$^{\circ}C$.

  • PDF