DOI QR코드

DOI QR Code

Change in Microstructure and Coating Layer of Al-Si Coated Steel after Conductive Heating

Al-Si 도금강의 통전 가열에 따른 미세조직과 도금층 변화

  • Jeong, Woo Chang (School of Mechanical and Automotive Engineering, Daegu Catholic University)
  • 정우창 (대구가톨릭대학교 기계자동차공학부)
  • Received : 2021.04.16
  • Accepted : 2021.04.30
  • Published : 2021.05.30

Abstract

Al-Si coated boron steel has been widely used as commercial hot stamping steel. When the steel is heated at 900~930℃ for 5 min in an electric furnace, thickness of the coating layer increases as a consequence of formation of intermetallic compounds and diffusion layer. The diffusion layer plays an important roll in blunting the propagation of crack from coating layer to base steel. Change in microstructure and coating layer of Al-Si coated boron steel after conductive heating with higher heating rate than electric furnace has been investigated in this study. Conductive-heated steel showed the martensitic structure with vickers hardness of 505~567. Both intermetallic compounds in coating layer and diffusion layer were not observed in conductive-heated steel due to rapid heating. It has been found that the conductive-heating consisting of rapid heating to 550℃ which is lower than melting point of Al-Si coating layer, slower heating to 900℃, and then 1 min holding at 900℃ is effective in forming intermetallic compound in coating layer and diffusion layer.

Keywords

Acknowledgement

이 논문은 2020년도 대구가톨릭대학교 교내연구비 지원으로 수행되었습니다.

References

  1. Y. Chang, Z. h. Meng, L. Ying, X. d. Li, N. Ma, and P. Hu : J. Iron. Steel. Res. Int., 18 (2011) 59.
  2. M. G. Lee, S. J. Kim, H. N. Han, and W. C. Jeong : Int. J. Mech. Sci., 51 (2009) 888. https://doi.org/10.1016/j.ijmecsci.2009.09.030
  3. J. Jeong, S. C. Park, G. Y. Shin, C. W. Lee, T. J. Kim, and M. S. Choi : Korean J. Met. Mater., 56 (2018) 787. https://doi.org/10.3365/kjmm.2018.56.11.787
  4. A. Turetta, S. Bruschi, and A. Ghiotti : J. Mater. Process. Technol. 177 (2006) 396. https://doi.org/10.1016/j.jmatprotec.2006.04.041
  5. H. Karbasian and A. E. Tekkaya : J. Mater. Process. Technol. 210 (2010) 2103. https://doi.org/10.1016/j.jmatprotec.2010.07.019
  6. Hao Zhao, Xiuli Hu, Junjia Cui, and Zhongwen Xing : Met. Mater. Int. 25 (2019) 381. https://doi.org/10.1007/s12540-018-0196-2
  7. K. Y. Kwon, N. H. Kim, and C. G. Kang : Open J. Adv. Mater. Res. 264 (2011) 241.
  8. Sven Hubner : Conf. Strategies in Car Body Engineering, Bernd-Arno Behrens ed., Automotive Circle, Bad Nauheim, Germany (2016).
  9. 2017 Tokyo Motor Show Panel Display Data of Asteer Co. Ltd(http://www.asteer.co.jp)
  10. 日本特許公報, 特許 第 4604364 (2010).
  11. 日本特許公報, 特許 第 583561 (2015).
  12. N. Kobayashi, T. Sagisaka, and T. Shiga : EuroCarBody 2013, Automotive Circle, Bad Nauheim, Germany (2013).
  13. GM Material Specification 14400.
  14. 지민기, 손현성, 오진근, 김성우, 김경목, 전태성 : 대한금속재료학회지, 58 (2020) 573.
  15. Dong Wei Fan, Han Soo Kim, Jin-Keun Oh, KwangGeun Chin and B. C. Decooman : ISIJ International, 50 (2010) 561. https://doi.org/10.2355/isijinternational.50.561
  16. P. Matysik, S. Jozwiak, and T. Czujko : Materials, 8 (2015) 914. https://doi.org/10.3390/ma8030914