• Title/Summary/Keyword: Heater Power

Search Result 473, Processing Time 0.027 seconds

Fabrication and Characteristics of Thermopneumatic-Actuated Polydimethylsiloxane Microvalve (열공압 방식의 Polydimethylsiloxane 마이크로 밸브의 제작 및 특성)

  • 김진호;조주현;한경희;김영호;김한수;김용상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.231-236
    • /
    • 2004
  • A normally open thermopneumaticc-actuated microvalve has been fabricated and their properties are investigated. The advantages of the proposed microvalve are of the low cost fabrication process and the transparent optical property using polydimethylsiloxane (PDMS) and indium tin oxide (ITO) glass. The fabricated microvalves with in-channel configuration are easily integrated with other microfluidic devices on the same substrate. The fabrication process of thermopneumatic-actuated microvalvesusing PDMS is very simple and its performance is very suitable for a disposable lab-on-a-chip. The PDMS membrane deflection increases and the flow rates of the microchannel with microvalvels decrease as the applied power to the ITO heater increases. The powers at flow-off are dependent on the membrane thickness and the applied inlet pressure but are independent of the channel width of microvalves. The flow rate is well controlled by the switching function of ITO heater and the closing/opening times are around 20 sec and 25 sec, respectively.

Improved Thermal Stability of Ag Nanowire Heaters with ZnO Layer (ZnO를 이용한 은 나노와이어 히터의 열 안정성 향상)

  • Choi, Wonjung;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.530-534
    • /
    • 2017
  • Transparent film heaters employing silver nanowires (Ag NWs) have attracted increasing attention because of their widespread applications. However, the low thermal resistance of Ag NWs limits the maximum operating temperature of the Ag NW film heater. In this study, Ag NW film heaters with high mechanical and thermal stability were successfully developed. The thermal power-out characteristics of the Ag NW heaters were investigated as a function of the Ag NW density. The results revealed that the prepared flexible Ag NW heater possessed high thermal stability over $190^{\circ}C$ owing to ZnO encapsulation. This indicates that the Ag NW film with excellent thermal stability have remarkably high potential for use as electrodes in film heaters operating at high temperatures.

Numerical Study of Melt Flow Pattern by Thermal Gradient of the Crucible in the Czochralski Process (초크랄스키법에서 도가니의 온도구배가 유동장에 미치는 영향에 대한 수치해석 연구)

  • Park, Jong-In;Han, Jeong-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.734-739
    • /
    • 2009
  • It is well known that the temperature and the flow pattern of the crystal-melt interface affect the qualities of the single crystal in the Czochralski process. Thus the temperature profile in the growth system is very important information. This work focuses on controlling the temperature of the silicon melt with a thermal gradient of the crucible. Therefore, the side heater is divided into three parts and an extra heater is added at the bottom for thermal gradient. The temperature of the silicon melt can be strongly influenced and controlled by the electric power of each heater.

A Development of Technology for Low- and Intermediate-Level Radioactive Waste Treatment utilizing Induction heater and Plasma torch (플라즈마 및 전기유도가열을 이용한 중.저준위 방사물 처리기술 개발)

  • Moon, Young-Pyo;Cho, Chun-Hyung;Song, Myung-Jae;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.357-360
    • /
    • 1997
  • Currently, there is a need for the development of an advanced new technology for Low-and Intermediate-Level Radioactive Waste (LILW) treatment from nuclear power plants. The vitrification and melting technology by the use of the electrical equipments such as induction heater and plasma torch based furnace, along with off-gas treatment are considered as the most promising one of the LILW treatment technology since they can produce a very stable waste forms as well as considerably large volume reduction, which is a world-wide trend to apply for radioactive waste treatment. Korea Electric Power Research Institute(KEPRI) has already completed a feasibility study on LILW treatment and conceptual system design of a demonstration plant to be constructed. For this research, KEPRI selected a cold crucible melter(CCM) for the vitrification of combustible waste, and plasma torch based furnace(PT) for the melting of noncombustible waste, along with off-gas treatment for the volatile radioisotopes such as cesium.

  • PDF

Energy Performance Analysis of Electric Heater and Heat Pump Food Dryers (전기히터식 및 히트펌프식 식품 건조기의 에너지 성능 비교)

  • Yu, Young Woo;Kim, Young Il;Park, Seungtae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, energy performance of two types of food dryers which are electric heater and heat pump is studied experimentally. With drying chamber temperatures controlled at 45, 50 and $55^{\circ}C$, sliced radish is dried from an initial mass of 90 to final 7 kg. Moisture content, drying time, total power consumption, MER (moisture extraction rate, kg/h) and SMER (specific moisture extraction rate, kg/kWh) are measured and analyzed. As the drying chamber temperature is increased, drying time is shortened but energy efficiency is reduced for both types. For an electric heater dryer, the effect of chamber temperature on drying time is significant but less significant on energy efficiency. For a heat pump dryer, the dependence of chamber temperature on drying time is weak but strong on energy efficiency. Temperature levels have little effect on electric heater dryer performance but strong effect on heat pump dryer which operates on a vapor compression refrigeration cycle. The energy performance of the heat pump dryer is superior with an average SMER of 2.175 kg/kWh which is 2.22 times greater than that of the electric heater dryer with SMER of 1.224 kg/kWh.

A Characteristic Analysis of Heater Triggered Persistent Current System with 2G High Tc Superconducting Tape (차세대 고온초전도 선재를 이용한 영구전류시스템의 히터트리거 특성 해석)

  • Park, Dong-Keun;Kang, Hyoung-Ku;Yang, Seong-Eun;Ahn, Min-Cheol;Yoon, Yong-Soo;Yoon, Kyung-Yong;Lee, Sang-Jin;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1228-1230
    • /
    • 2005
  • This paper deals with design of heater trigger switching in a persistent current system(PCS) by finite element method(FEM) analysis of YBCO coated conductor(CC) tape. Most promising superconducting wire is YBCO coated conductor tape in these days for its high n value and critical current independency from external magnetic field. It is expected to be used many superconducting application such as fault current limiter and cable etc. The superconducting magnet which is operated in persistent current mode in SMES, NMR, MRI and MAGLEV has many advantages such as a high uniformity of a magnetic field and reducing a thermal loss. A PCS system consists of magnet power supply (MPS) which energized current to a magnet, heater, a coated conductor tape for switching, and superconducting magnet. In this paper, the characteristic of thermal quench of the YBCO CC tape and BSCCO tape by heater trigger analyzed by FEM. And optimal length of heater is calculated by temperature and time analysis. This heater trigger analysis is expected to be a basic concept of PCS application design.

  • PDF

A Study on improvement of plating equipment for fire prevention (도금 공장의 화재 예방을 위한 도금장비 개선에 관한 연구)

  • Kim, Sung-Jae;Kim, Sung-Gon;Yoo, Woo-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • A number of plating companies have been exposed to the risk of fire due to unexpected temperature increasing of water or other reasons in a plating bath. Since the companies are not able to forecast the unexpected temperature increasing of plating bath and most of raw materials in the bath have low ignition temperature, it is easy to be exposed to the risk of fire. Thus, in previous study, we tried to monitor and notice the dangerous change of temperature of water immediately to prevent the risk of fire from plating process. However, unfortunately previous studies were not able to shut out the fundamental cause of fire since bath temperature sensor can detect air temperature when the level sensor was malfunctioned. In this paper we developed the Teflon heater which contains a built in temperature sensor and improved plating equipment system. Teflon heater is improved using Pt $100{\Omega}$ sensor which can detect until $600^{\circ}C$. When the bath temperature sensor detects over $60^{\circ}C$ or the Teflon heater sensor detects over $240^{\circ}C$ they temporarily shut down the heater to control temperature. Also relay completely shuts down main power when detects instant temperature is detected over 5% of $240^{\circ}C$ by the heater sensor to prevent teflon melting down and fire spreads. Developed plating equipment system can monitor a real time temperature in the teflon tube and bath water. Therefore we think the proposed plating equipment can eliminate the possibility of fire in plating processes fundamentally.

Wall Heat Flux Behavior of Nucleate Pool Boiling Under a Constant Temperature Condition in a Binary Mixture System (일정 벽면 온도 조건에서 이성분 혼합물의 핵비등시 벽면 열유속 거동)

  • Bae, Sung-Won;Lee, Han-Choon;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1239-1246
    • /
    • 2000
  • The objective of this work is to measure space and time resolved wall heat fluxes during nucleate pool boiling of R113/R11 mixtures using a microscale heater array in conjunction with a high speed CCD. The microscale heater array is constructed using VLSI techniques, and consists of 96 serpentine platinum resistance heaters on a transparent quartz substrate. Electronic feedback circuits are used to keep the temperature of each heater at a specified temperature and the variation in heating power required to keep the temperature constant is measured. Heat flux data around an isolated bubble are obtained with triggered CCD images. CCD images are obtained at a rate of 1000frames/second. The heat transfer variation vs. time on the heaters directly around the nucleation site is plotted and correlated with images of the bubble obtainedby using the high speed CCD. For both of the mixture(R11/R113) and pure system(pure R11, pure R113), the wall heat fluxes are presented and compared to find out the qualitative difference between pure and binary mixture nucleate boiling.

Development of monitoring system for demonstration test of solar energy system (태양에너지 시스템의 실증시험을 위한 모니터링 시스템 개발)

  • Yang, Dong-Jo;Kim, Jae-Yeol;Oh, Yool-Kwon;Kim, Jin-Heung;Chung, Nak-Kyu;Cho, Guem-Bae
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.723-726
    • /
    • 2005
  • The application of solar energy, in the field of alternative energy, was on the increase tendency. In the case of advanced nations, through continuous R&D, solar hot water heater with high efficiency has been used for the house and the industrial process on business, advanced nations were reached up the experimental stage of solar generation system. But, the actual circumstance of the domestic has been not accomplished the popularization of solar hot water heater and the settlement of it which is the fundamental stage of the solar energy usage. This trouble, the domestic was flooded with small enterprise for producing solar hot water heater, was caused by the popularization and the production without verification of performance. To supply the monitoring program for evaluating solar hot water heater, this research was purpose to improve the technical development of the enterprise for producing solar-heat hot-water-boiler and served as an aid for the enlargement and the popularization on solar energy.

  • PDF

The Study of the Fire Possibility of Sheath Heater without Safety Device in Use(Focused on the fire cases) (안전장치 없는 시즈히터에 대한 사용중 발화 가능성 연구(화재사례를 중심으로))

  • Mun, Yong-Su;Myeong, Jeong-Ho;Choe, Jin-Man;Kim, Yong-Su
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.4 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • The purpose of this study on the sheath heater having high occurrence of fires in a small work place because of not having the safety device, was to find out the characteristics required in the field examination of the fires in the courses of investigation. The results of the experiments conducted and reviewed on the basis of the fire cases whose conditions of the ignition possibility were divided into A, E, C and D are as follows: When the sheath heater without safety device is left on the condition of the heat accumulation of which the temperature rapidly rise, and then ignite the inflammables of the surroundings. In such cases, it was characterized that the color change trace appeared even if no short trace was discovered in the power line.

  • PDF