Numerical Study of Melt Flow Pattern by Thermal Gradient of the Crucible in the Czochralski Process

초크랄스키법에서 도가니의 온도구배가 유동장에 미치는 영향에 대한 수치해석 연구

  • Park, Jong-In (School of Materials Science and Engineering, Inha University) ;
  • Han, Jeong-Whan (School of Materials Science and Engineering, Inha University)
  • 박종인 (인하대학교 신소재공학부) ;
  • 한정환 (인하대학교 신소재공학부)
  • Received : 2009.05.19
  • Published : 2009.11.25

Abstract

It is well known that the temperature and the flow pattern of the crystal-melt interface affect the qualities of the single crystal in the Czochralski process. Thus the temperature profile in the growth system is very important information. This work focuses on controlling the temperature of the silicon melt with a thermal gradient of the crucible. Therefore, the side heater is divided into three parts and an extra heater is added at the bottom for thermal gradient. The temperature of the silicon melt can be strongly influenced and controlled by the electric power of each heater.

Keywords

References

  1. H. S. Jo, J. of Kor. Cryst. Growth and Cryst. Tech. 1, 117 (1991)
  2. H. Y. Park, J. S. Lee, S. W. Kwon, S. W. Yoon, H. J. Lim, and D. H. Kim, J. Kor. Inst. Met. & Mater. 46, 835 (2008)
  3. W. Miller, U. Rehse, and K. Bottcher, Solid-State Electronics 44, 825 (2000) https://doi.org/10.1016/S0038-1101(99)00280-4
  4. J. R. Carruthers, J. Crystal Growth. 32, 13 (1976) https://doi.org/10.1016/0022-0248(76)90004-X
  5. J. R. Ristocelli and J. L. Lumley, J. Crystal Growth. 116, 447 (1992) https://doi.org/10.1016/0022-0248(92)90654-2
  6. K. S, S. Miyahara, T. Fujiwara, T. Kubo, and H. Fujiwara, J. Crystal Growth. 109, 149 (1991) https://doi.org/10.1016/0022-0248(91)90171-Z
  7. C. N. Kim, J. of Kor. Cryst. Growth and Cryst. Tech. 10, 177 (2000)
  8. E. Dornberger and W. Von Ammon, J. Electrochem. Soc. 143, 1648 (1996) https://doi.org/10.1149/1.1836693
  9. A. Hirata, M. Tachibana, Y. Okano, and T. Fukuda, J. Crystal Growth. 128, 195 (1993) https://doi.org/10.1016/0022-0248(93)90318-Q
  10. Y. Okano, T. Fukuda, A. Hirata, M. Hozawa, and N. Imaishi, J. Crystal Growth. 109, 94 (1991) https://doi.org/10.1016/0022-0248(91)90162-X
  11. F. Dupret, N. Van Den Bogaert, in: D. T. J. Hurle (Ed.), Handbook of Crystal Growth. 2, 875 (1994)
  12. I. K. Bae and C. M. Whang, Met. Mater. Inst. 5, 491 (1999) https://doi.org/10.1007/BF03026164
  13. K. Kakimoto, M. Eguchi, H. Watanabe, and T. Hibiya, J. Crystal Growth. 94, 412 (1989) https://doi.org/10.1016/0022-0248(89)90016-X
  14. O. V. Smirnova, V. V. Kalaev, Yu. N. Makarov, Ch. Frank- Rotsch, M. Neubert, and P. Rudolph, J. Crystal Growth. 266, 67 (2004) https://doi.org/10.1016/j.jcrysgro.2004.02.031
  15. M. Neubert and P. Rudolph, Prog. Crystal Growth Charact. Mater. 43, 119 (2001) https://doi.org/10.1016/S0960-8974(01)00005-5
  16. J. C. Brice, 'Heat of fusion of Si', in Properties of silicon, EMIS Datareview series, p.57, EMIS knowledge bank. (1987)
  17. A. Virzi, J. Crystak Growth. 112, 699 (1991) https://doi.org/10.1016/0022-0248(91)90126-P
  18. Y. M. Shashkov and V. P. Grishin, Sov. Phys. Solid State. 8, 447 (1996)
  19. W. P. Jones and B. E. Launder, Int. J. Heat Mass Transfer. 15, 301 (1972) https://doi.org/10.1016/0017-9310(72)90076-2
  20. W. A. Fiveland, J. Heat Transfer. 106, 699 (1984) https://doi.org/10.1115/1.3246741