Browse > Article

Numerical Study of Melt Flow Pattern by Thermal Gradient of the Crucible in the Czochralski Process  

Park, Jong-In (School of Materials Science and Engineering, Inha University)
Han, Jeong-Whan (School of Materials Science and Engineering, Inha University)
Publication Information
Korean Journal of Metals and Materials / v.47, no.11, 2009 , pp. 734-739 More about this Journal
Abstract
It is well known that the temperature and the flow pattern of the crystal-melt interface affect the qualities of the single crystal in the Czochralski process. Thus the temperature profile in the growth system is very important information. This work focuses on controlling the temperature of the silicon melt with a thermal gradient of the crucible. Therefore, the side heater is divided into three parts and an extra heater is added at the bottom for thermal gradient. The temperature of the silicon melt can be strongly influenced and controlled by the electric power of each heater.
Keywords
Czochralski method; single crystal; silicon; computer simulation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H. Y. Park, J. S. Lee, S. W. Kwon, S. W. Yoon, H. J. Lim, and D. H. Kim, J. Kor. Inst. Met. & Mater. 46, 835 (2008)
2 W. Miller, U. Rehse, and K. Bottcher, Solid-State Electronics 44, 825 (2000)   DOI   ScienceOn
3 J. R. Carruthers, J. Crystal Growth. 32, 13 (1976)   DOI   ScienceOn
4 C. N. Kim, J. of Kor. Cryst. Growth and Cryst. Tech. 10, 177 (2000)
5 K. Kakimoto, M. Eguchi, H. Watanabe, and T. Hibiya, J. Crystal Growth. 94, 412 (1989)   DOI   ScienceOn
6 F. Dupret, N. Van Den Bogaert, in: D. T. J. Hurle (Ed.), Handbook of Crystal Growth. 2, 875 (1994)
7 J. R. Ristocelli and J. L. Lumley, J. Crystal Growth. 116, 447 (1992)   DOI   ScienceOn
8 K. S, S. Miyahara, T. Fujiwara, T. Kubo, and H. Fujiwara, J. Crystal Growth. 109, 149 (1991)   DOI   ScienceOn
9 E. Dornberger and W. Von Ammon, J. Electrochem. Soc. 143, 1648 (1996)   DOI
10 A. Hirata, M. Tachibana, Y. Okano, and T. Fukuda, J. Crystal Growth. 128, 195 (1993)   DOI   ScienceOn
11 H. S. Jo, J. of Kor. Cryst. Growth and Cryst. Tech. 1, 117 (1991)
12 A. Virzi, J. Crystak Growth. 112, 699 (1991)   DOI   ScienceOn
13 O. V. Smirnova, V. V. Kalaev, Yu. N. Makarov, Ch. Frank- Rotsch, M. Neubert, and P. Rudolph, J. Crystal Growth. 266, 67 (2004)   DOI   ScienceOn
14 W. A. Fiveland, J. Heat Transfer. 106, 699 (1984)   DOI
15 Y. Okano, T. Fukuda, A. Hirata, M. Hozawa, and N. Imaishi, J. Crystal Growth. 109, 94 (1991)   DOI   ScienceOn
16 I. K. Bae and C. M. Whang, Met. Mater. Inst. 5, 491 (1999)   DOI
17 J. C. Brice, 'Heat of fusion of Si', in Properties of silicon, EMIS Datareview series, p.57, EMIS knowledge bank. (1987)
18 W. P. Jones and B. E. Launder, Int. J. Heat Mass Transfer. 15, 301 (1972)   DOI   ScienceOn
19 Y. M. Shashkov and V. P. Grishin, Sov. Phys. Solid State. 8, 447 (1996)
20 M. Neubert and P. Rudolph, Prog. Crystal Growth Charact. Mater. 43, 119 (2001)   DOI   ScienceOn