Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.8.530

Improved Thermal Stability of Ag Nanowire Heaters with ZnO Layer  

Choi, Wonjung (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University)
Jo, Sungjin (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.8, 2017 , pp. 530-534 More about this Journal
Abstract
Transparent film heaters employing silver nanowires (Ag NWs) have attracted increasing attention because of their widespread applications. However, the low thermal resistance of Ag NWs limits the maximum operating temperature of the Ag NW film heater. In this study, Ag NW film heaters with high mechanical and thermal stability were successfully developed. The thermal power-out characteristics of the Ag NW heaters were investigated as a function of the Ag NW density. The results revealed that the prepared flexible Ag NW heater possessed high thermal stability over $190^{\circ}C$ owing to ZnO encapsulation. This indicates that the Ag NW film with excellent thermal stability have remarkably high potential for use as electrodes in film heaters operating at high temperatures.
Keywords
Silver nanowire; Transparent film heater; ZnO; Thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Y. Kim, Y. W. Kim, H. S. Lee, H. Kim, W. S. Yang, and K. S. Suh, Adv. Funct. Mater., 23, 1250 (2013). [DOI: https://doi.org/10.1002/adfm.201202013]   DOI
2 P. Liu, L. Liu, K. Jiang, and S. Fan, Small, 7, 732 (2011). [DOI: https://doi.org/10.1002/smll.201001662]   DOI
3 C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, and J. P. Simonato, Nano Res., 5, 427 (2012). [DOI: https://doi.org/10.1007/s12274-012-0225-2]   DOI
4 D. Kim, L. Zhu, D. J. Jeong, K. Chun, Y. Y. Bang, S. R. Kim, J. H. Kim, and S. K. Oh, Carbon, 63, 530 (2013). [DOI: https://doi.org/10.1016/j.carbon.2013.07.030]   DOI
5 Z. P. Wu and J. N. Wang, Physica E, 42, 77 (2009). [DOI: https://doi.org/10.1016/j.physe.2009.09.003]   DOI
6 K. Im, K. Cho, K. Kwak, J. Kim, and S. Kim, J. Nanosci. Nanotechnol., 13, 3519 (2013). [DOI: https://doi.org/10.1166/jnn.2013.7322]   DOI
7 A. Y. Kim, K. Lee, J. H. Park, D. Byun, and J. K. Lee, Phys. Status Solidi A, 211, 1923 (2014). [DOI: https://doi.org/10.1002/pssa.201330517]   DOI
8 D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J. P. Simonato, Nanotechnology, 24, 452001 (2013). [DOI: https://doi.org/10.1088/0957-4484/24/45/452001]   DOI
9 S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, Adv. Mater., 26, 6670 (2014). [DOI: https://doi.org/10.1002/adma.201402710]   DOI
10 H. G. Im, J. Jin, J. H. Ko, J. Lee, J. Y. Lee, and B. S. Bae, Nanoscale, 6, 711 (2014). [DOI: https://doi.org/10.1039/c3nr05348b]   DOI
11 S. Nam, M. Song, D. H. Kim, B. Cho, H. M. Lee, J. D. Kwon, S. G. Park, K. S. Nam, Y. Jeong, S. H. Kwon, Y. C. Park, S. H. Jin, J. W. Kang, S. Jo, and C. S. Kim, Sci. Rep., 4, 4788 (2014). [DOI: https://doi.org/10.1038/srep04788]
12 D. Chen, J. Liang, C. Liu, G. Saldanha, F. Zhao, K. Tong, J. Liu, and Q. Pei, Adv. Funct. Mater., 25, 7512 (2015). [DOI: https://doi.org/10.1002/adfm.201503236]   DOI
13 J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett., 8, 689 (2008). [DOI: https://doi.org/10.1021/nl073296g]   DOI
14 T. B. Song, Y. Chen, C. H. Chung, Y. Yang, B. Bob, H. S. Duan, G. Li, K. N. Tu, Y. Huang, and Y. Yang, ACS Nano, 8, 2804 (2014). [DOI: https://doi.org/10.1021/nn4065567]   DOI