• Title/Summary/Keyword: Heat-shock proteins

Search Result 321, Processing Time 0.023 seconds

Analysis of the Correlation between Expressions of HSP90α, HSP90β, and GRP94, and the Clinicopathologic Characteristics in Tissues of Non-Small Cell Lung Cancer Patients (비소세포 폐암 환자 조직에서 Hsp90α, Hsp90β, GRP94의 발현과 임상병리학적 특성과의 상관관계 분석)

  • Kim, Mi Kyeong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.460-469
    • /
    • 2017
  • Heat shock proteins (HSPs) are induced as a self-defense mechanism of cells when exposed to various external stresses, such as high fever, infection, free radicals, and heavy metals. They affect the prognosis in the process of tumor formation. HSP is classified into four families: HSP27, HSP60, HSP90, and HSP100, depending on molecular weight. Heat shock protein 90 (HSP90), a molecular chaperone, plays an important role in the cellular protection against various stressful stimuli and in the regulation of cell cycle progression and apoptosis. In the present study, we assessed the differential expression of HSP90 family proteins in non-small cell lung cancer (NSCLC), and the correlation of their expression levels with clinicopathologic factors and patient survival rates. The result of this study can be summarized as follows; $HSP90{\alpha}$ showed higher expression in patients with no lymphovascular invasion (p=0.014). $HSP90{\beta}$ showed a higher expression of squamous cell carcinoma (p=0.003), and an over expression of glucose-related protein (GRP94) was significantly associated with poor differentiation (p=0.048). However, none of the HSP90 proteins showed a significant association with the survival status in patients with NSCLC. This study also indicates that $HSP90{\alpha}$ might contribute more to the carcinogenesis of NSCLC than $HSP90{\beta}$, and GRP94 and isoform selectivity should be considered when HSP90 inhibitors are studied or utilized in the treatment of NSCLC.

Campylobacter jejuni 의 열충격 반응과 그유전자에 관한 연구

  • 김치경;임채일;이길재
    • Korean Journal of Microbiology
    • /
    • v.30 no.3
    • /
    • pp.232-238
    • /
    • 1992
  • Canz~~j~lohuc;tc.~jurn i werc studied for their heat shock responses at several elevated temperatures and their heat shock genes were detected by the technique of Southern hybridization. (.. ,jc\ulcorneruni sy~>thesized the major heat shock proteins of hsp90. hsphh. and hsphO at 48$^{\circ}$C . ant1 their w~u.ival rates were maintained as the same level at optimal temperature. '1-hc heat shock genes in chromosome of C ,jc:jutii werc determined to be homologous to the heat shock genes or E. t,oli. by showing strong signals in Southern hybridization analysis using clnaK and groESL- as DNA probe But the restriction sites for thc fragmcnts including heat shock genes were different betueen E. c,oli and C ,jtjuni.

  • PDF

Physiological Properties of Lactobacillus acidophilus 30SC Exposed to Heat Shock Stress (Heat Shock Stress에 의한 Lactobacillus acidophilus 30SC의 생리적 특성)

  • Moon, Yong-Il;Han, Soo-Min;Park, Dong-Jun;Chi, Youn-Tae;Kim, Kwang-Hyun;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.25 no.3
    • /
    • pp.350-356
    • /
    • 2005
  • We examined the enhancement of thermotolerance for storage conferred on Lactobacillus acidophilus 30SC by adaptation to different stresses. The viable cells of Lactobacillus acidophilus 30SC were compared with their viability prior to heating at $45,\;55^{\circ}C\;and\;60^{\circ}C$. Heat-adapted ($45^{\circ}C$ for 15 min) L. acidophilus 30SC in MRS broth exhibited higher survivability at lethal temperature of $55^{\circ}C$ than control. Cellular protein profiles of L. acidophilus 30SC during heat adaptation were examined with SDS-PAGE, and scanning electron microscopy. When L. acidophilus 30SC was heat-adapted at $55^{\circ}C$ for 15min, 5 new protein spots of ca $8\~45\;kDa$ size were observed on 2D SDS-PAGE. It was presumed that new proteins of L. acidophilus 30SC were produced to adapt to the environment of higher growth temperature.

Characterization of a Cadmium-resistant Yeast Strain in Response to Cadmium or Heat Shock Stress

  • Huh, Nam-Eung;Choi, Nack-Shick;Seo, Young-Kyo;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.30-35
    • /
    • 1994
  • A varient strain of budding yeast, Hansenula anomala B-7 which had been identified to be highly resistant to cadmium ions, were observed by transmission electron microscopy. It was shown that the cells accumulated excess amounts of cadmium ions throughout inside the cell rather than on the cell surface. The cell growth in response to cadmium or heat shock stress has also been investigated. It was observed that the cells precultured in the presence of 500 $\mu$ g/ml of Cd ions grew slower than those precultured at 1, 000 $\mu$ g/ml of the metal ions, when they were cultivated in the media containing 1, 000 $\mu$g/ml of the metal ions. Heat shock, however, stimulated the cell growth transiently, when the cells were allowed to grow in the presence of 1, 000 $\mu$g/ml of the metal ions. But the cells given heat shock for more than 100 min received permanent damage to growth. Effects of both stresses on budding rate was also examined. It revealed that the stresses did not change the budding ratio much, which was contradictory to that observed from the same budding yeast, Saccharomyces cerevisiae. Furthermore, the cells treated with 1, 000 $\mu$g/ml of the metal ions not only induced, but also switched off the expression of several new proteins. Some of the cadmium stress-inducible proteins were estimated to be also induced by heat shock stress.

  • PDF

Stress as a Trigger of Pollen Embryogenesis

  • Zarsky, Viktor;Soukupova, Hana
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.411-413
    • /
    • 2000
  • The ability of microspores or young pollen grains (male gametophytes) to undergo developmetal switch to embryogenic (sporophytic) pathway exemplifies the concept of totipotency as applied to haploid posmeiotic cells. As a first step pollen is devoid of positional information provided in situ by the intact anther - by isolation and cultivation in vitro in artificial media. This is inevitably accompanied by some degree of stress response in microspore/pollen. It has been shown in both monocots and dicots that intentional stress treatment (mostly starvation or heat shock) greatly stimulates embryo induction rate. Using transgenic sHSP antisense Nicotiana tabacum we show that expression of small heat shock proteins is an integral part of successful embryo and later haploid plant production from pollen grains. Our recently published data show that sHSP chaperone function is optimal in the absence of ATP.

  • PDF

Identification of candidate proteins regulated by long-term caloric restriction and feed efficiency in longissimus dorsi muscle in Korean native steer

  • Jung, Usuk;Kim, Minjeong;Wang, Tao;Lee, Jae-Sung;Seo, Seongwon;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.330-342
    • /
    • 2022
  • We aimed to investigate candidate proteins related to long-term caloric restriction and feed efficiency in bovine longissimus dorsi muscle (LM). A total of 31 Korean native steers were randomly distributed to ad libitum (n = 16) or caloric restriction group (n = 15) to conduct two feeding trials for 13 mon. In the first trial (10-18 mon of age), steers were fed with 100% ad libitum (NEg = 0.63 Mcal/kg) or caloric restriction (80% of the previous day's feed intake of ad libitum group). In the second trial (18-23 mon of age), the energy value of 100% ad libitum diet was 1.13 Mcal/kg NEg and those in caloric restriction group diet was 0.72 Mcal/kg NEg. At the endpoint of this experiment, in each group, 6 animals were selected with high (n = 3) or low feed efficiency (n = 3) to collect muscle tissue samples (6 animals/group). From muscle tissues of 23 mo of age, we excavated 9 and 12 differentially expressed (two-fold or more) proteins in a nutritional group and feed efficiency group using two-dimensional electrophoresis, respectively. Of these proteins, heat shock protein beta-6 was up-regulated in both the caloric restriction and the low feed efficiency group. In bovine embryonic fibroblasts, the mRNA expression of heat shock protein beta-6 increased after adipogenic differentiation, however, decreased after myogenic differentiation. Our data provide that heat shock protein beta-6 may be an adipogenic protein involved in the mechanism of caloric restriction and feed efficiency in the LM of the steer.

Heat shock transcription factors and sensory placode development

  • Nakai, Akira
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.631-635
    • /
    • 2009
  • The heat shock transcription factor (HSF) family consists of at least three members in mammals and regulates expression of heat shock proteins in response to heat shock and proteotoxic stresses. Especially, HSF1 is indispensable for this response. Members of this family are also involved in development of some tissues such as the brain and reproductive organs. However, we did not know the molecular mechanisms that regulate developmental processes. Involvement of HSFs in the sensory development was implicated by the finding that human hereditary cataract is associated with mutations of the HSF4 gene. Analysis of gene-disrupted mice showed that HSF4 and HSF1 are required for the lens and the olfactory epithelium, respectively. Furthermore, a common molecular mechanism that regulates developmental processes was revealed by analyzing roles of HSFs in the two developmentally-related organs.

Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes

  • Lumbera, Wenchie Marie L.;Cruz, Joseph dela;Yang, Seung-Hak;Hwang, Seong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.419-427
    • /
    • 2016
  • There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at $42^{\circ}C$ for one hour and then allowed to recover at normal incubation temperature of $37^{\circ}C$ for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to $400{\mu}g/mL$) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat shock amelioration among 3T3-L1 preadipocytes through heat shock factor and proteins augmentation and enhanced adipogenic marker expression.

Increased Viability of Sub-lethal Heat Shocked Salmonella Typhimurium on Acids and Oxidants (열충격 Salmonella Typhimurium의 산과 산화제에서 생존력 증가)

  • Moon, Bo-Youn;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.712-716
    • /
    • 2008
  • In an effort to evaluate Salmonella food safety using combinations of preservation techniques, its viabilities when exposed to HCl, acetic acid, and the oxidative agents (hydrogen peroxide and butyl hydrogen peroxide), were analyzed using sub-lethal heat-shocked Salmonella Typhimurium at $56^{\circ}C$. 2D gel electrophoresis and MALDI-TOF MS analyses were also conducted to determine the expression and repression of proteins in heat-shocked cells. Heat-shocked S. Typhimurium evidenced a reduction of viable counts by 1-2 log CFU/mL. However, viality of non heat-shocked S. Typhimurium decreased markedly by 5-6 log CFU/mL at a pH 4 in response to acid and oxidative stresses. Sub-lethal heat treatment greatly increased the resistance of S. Typhimurium against acid and oxidant agents. As for 2D gel electrophoresis and protein identification via MALDI-TOF MS, 17 major proteins in non heat-shocked S. Typhimurium were detected, and only 13 proteins among these proteins were detected in heat-shocked S. Typhimurium. The heat shock proteins such as DnaK and small heat shock proteins were included, and may be associated with the resistance of S. typhimurium against exposure to acids and oxidants. Therefore, even though the promising hurdle technology using the combined mild treatments including heat was applied to S. Typhimurium, the proper heat treatment to reduce its crossprotection activity toward the following preservative agents might be considered.

HSP27 EXPRESSION IN OSTEOBLAST BY THERMAL STRESS (골모세포에서 열자극에 의한 Hsp27 발현에 대한 연구)

  • Rim, Jae-Suk;Kim, Byeong-Ryol;Kwon, Jong-Jin;Jang, Hyon-Seok;Lee, Eui-Suk;Jun, Sang-Ho;Woo, Hyeon-Il
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • Aim of the study: Thermal stress is a central determinant of osseous surgical outcomes. Interestingly, the temperatures measured during endosseous surgeries coincide with the temperatures that elicit the heat shock response of mammalian cells. The heat shock response is a coordinated biochemical response that helps to protect cells from stresses of various forms. Several protective proteins, termed heat shock proteins (hsp) are produced as part of this response. To begin to understand the role of the stress response of osteoblasts during surgical manipulation of bone, the heat shock protein response was evaluated in osteoblastic cells. Materials & methods: With primary cell culture studies and ROS 17/2.8 osteoblastic cells transfected with hsp27 encoding vectors culture studies, the thermal stress response of mammalian osteoblastic cells was evaluated by immunohistochemistry and western blot analysis. Results: Immunocytochemistry indicated that hsp27 was present in unstressed osteoblastic cells, but not fibroblastic cells. Primarily cultured osteoblasts and fibroblasts expressed the major hsp in response to thermal stress, however, the small Mr hsp, hsp27 was shown to be a constitutive product only in osteoblasts. Creation of stable transformed osteoblastic cells expressing abundant hsp27 protein was used to demonstrate that hsp27 confers stress resistance to osteoblastic cells. Conclusions: The demonstrable presence and function of hsp27 in cultured bones and cells implicates this protein as a determinant of osteoblastic cell fate in vivo.