Browse > Article

Physiological Properties of Lactobacillus acidophilus 30SC Exposed to Heat Shock Stress  

Moon, Yong-Il (Division of Pet & Herb Science, Woosuk University)
Han, Soo-Min (Department of Animal Science and Institute of Agricultural Science & Technology, Chonnam National University)
Park, Dong-Jun (Korea Food Research Institute)
Chi, Youn-Tae (Department of Animal Science and School of Biological Science & Biotechnology, Chonnam National University)
Kim, Kwang-Hyun (Department of Animal Science and Institute of Agricultural Science & Technology, Chonnam National University)
Oh, Sejong (Department of Animal Science and Institute of Agricultural Science & Technology, Chonnam National University)
Publication Information
Food Science of Animal Resources / v.25, no.3, 2005 , pp. 350-356 More about this Journal
Abstract
We examined the enhancement of thermotolerance for storage conferred on Lactobacillus acidophilus 30SC by adaptation to different stresses. The viable cells of Lactobacillus acidophilus 30SC were compared with their viability prior to heating at $45,\;55^{\circ}C\;and\;60^{\circ}C$. Heat-adapted ($45^{\circ}C$ for 15 min) L. acidophilus 30SC in MRS broth exhibited higher survivability at lethal temperature of $55^{\circ}C$ than control. Cellular protein profiles of L. acidophilus 30SC during heat adaptation were examined with SDS-PAGE, and scanning electron microscopy. When L. acidophilus 30SC was heat-adapted at $55^{\circ}C$ for 15min, 5 new protein spots of ca $8\~45\;kDa$ size were observed on 2D SDS-PAGE. It was presumed that new proteins of L. acidophilus 30SC were produced to adapt to the environment of higher growth temperature.
Keywords
Lactobacillus acidophilus; thermotolerance; heat-shock proteins; stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Diez-Gonzalez, F. and Russel, J. B. (1999) Factors affecting the extreme acid resistance of Escherichia coli O157:H7. F. Microbiol. 16, 367-374   DOI   ScienceOn
2 Fernandez Murga, M. L., Cabrera, G. M., de Valdez, G. F., Disalvo, A., and Seldes, A. M. (2000) Influence of growth temperature on cyrotolerance and lipid composition of Lactobacillus acidophilus. J. Appl. Micorobiol. 88, 342-348   DOI   ScienceOn
3 Kim, W. S., Perl, L., Park, J. H., Tandianus, J. E., and Dunn, N. W. (2001b) Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr. Microbiol. 43, 346-350   DOI   ScienceOn
4 Konkel, M. E., Kim, B. J., Klena, J. D., Young, C. R., and Ziprin, R. (1998) Characterization of thermal stress response of Campylobacter jejuni. Infect. Immun. 66, 3666-3672
5 Movahedi, S. and Waites, W. (2000) A two-dimensional protein gel electrophoresis study of the heat stress response of Bacillus subtilis cells during sporulation. J. Bacteriol. 182, 4758-4763   DOI   ScienceOn
6 O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007-4021   PUBMED
7 Oh, S., Kim, S. H., and Worobo, R. W. (2000) Characterization and purification of a bacteriocin produced by a potential probiotic culture, Lactobacillus acidophilus 30SC. J. Dairy Sci. 83, 2747-2752   DOI   ScienceOn
8 Otani, M., Tabata, J., Ueki, T., Sano, K., and Inouye, S. (2001) Heat-shock-induced proteins from Myxococcus xanthus. J. Bacteriol. 183, 6282-6287   DOI   ScienceOn
9 Pot, B., Ludwig, W., Kersters, K., and Schleifer, K. H. (1994) Taxonomy of lactic acid bacteria. In: Bacteriocins of lactic acid bacteria. De Vuyst, L., and Vandamme, E. J. (eds.), Chapman and Hall, London. pp.13-90
10 Shin, J. G. (2003) Physiological properties of lactic acid bacteria exposed to lower-growth temperature. Ph. D. thesis, Seoul National Univ., Seoul, Korea
11 Boutibonnes, P., Bisson, V., Thammavongs, B., Hartke, A., Panoff, J. M., Benachour, A., and Auffray, Y. (1995) Induction of thermotolerance by chemical agents in Lactococcuslactis subsp. lactis IL1403. Int. J. Food Microbiol. 25, 83-94   DOI   ScienceOn
12 Fuller, R. (1989) Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378   DOI   PUBMED
13 Gomes, A. M. P. and Malcata, F. X. (1999) Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 10, 139-157   DOI   ScienceOn
14 Kim, J. H., Park, M. Y., Kim, S. C., Yun, H. S., and So, J. S. (2003) Improved viability and proteome analysis of Lactobacillus fermentum KLB12 upon heat stress. Kor. J. Biotechnol. Bioeng. 18, 294-300
15 Demple, B. (1991) Regulation of bacterial oxidative stress genes. Ann. Rev. Gen. 25, 315-337   DOI   PUBMED   ScienceOn
16 Giard, J. C., Laplace, J. M., Rince, A., Pichereau, V., Benachour, A., Leboeuf, C., Flahaut, S., Auffray, Y., and Hartke, A. (2001) The stress proteome of Enterococcus faecalis. Electrophoresis 22, 2947-2954   DOI   ScienceOn
17 Kim, J. H., Lee, S. Y., Chang, C. E., Kim, S. C., Yun, H. S., and So, J. S. (2001a) Effect of cold adaptation on the improved viability of Lactobacillus crispatus KLB46. Kor. J. Biotechnol. Bioeng. 16, 626-631
18 Gahan, C. G. M. and Hill, C. (1999) The relationship between acid and virulence in Salmonella typhimurium and Listeria monocytogenes. Int. J. Food Microbiol. 50, 93-100   DOI   ScienceOn
19 Foster, J. W. and Hall, H. K. (1991) Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J. Bacteriol. 173, 5129-5135   DOI
20 Hill, C., O'Driscoll, B., and Booth, I. (1995) Acid adptation and food poisoning microorganisms. Int. J. Food Microbiol. 28, 245-254   DOI   ScienceOn
21 Pagan, R., Condon, S., and Sala, F. J. (1997) Effects of several factors on the heat-shock-induced thermotolerance of Listeria Monocytogenes. Appl. Environ. Microbiol. 63, 3225-3232
22 Csonka, L. N. and Hanson, A. D. (1991) Prokaryotic osmoregulation: genetics and physiology. Ann. Rev. Microbiol. 45, 569-606   DOI   ScienceOn