DOI QR코드

DOI QR Code

Analysis of the Correlation between Expressions of HSP90α, HSP90β, and GRP94, and the Clinicopathologic Characteristics in Tissues of Non-Small Cell Lung Cancer Patients

비소세포 폐암 환자 조직에서 Hsp90α, Hsp90β, GRP94의 발현과 임상병리학적 특성과의 상관관계 분석

  • Kim, Mi Kyeong (Department of Clinical Laboratory Science, Gimhae College)
  • 김미경 (김해대학교 임상병리과)
  • Received : 2017.10.25
  • Accepted : 2017.11.22
  • Published : 2017.12.31

Abstract

Heat shock proteins (HSPs) are induced as a self-defense mechanism of cells when exposed to various external stresses, such as high fever, infection, free radicals, and heavy metals. They affect the prognosis in the process of tumor formation. HSP is classified into four families: HSP27, HSP60, HSP90, and HSP100, depending on molecular weight. Heat shock protein 90 (HSP90), a molecular chaperone, plays an important role in the cellular protection against various stressful stimuli and in the regulation of cell cycle progression and apoptosis. In the present study, we assessed the differential expression of HSP90 family proteins in non-small cell lung cancer (NSCLC), and the correlation of their expression levels with clinicopathologic factors and patient survival rates. The result of this study can be summarized as follows; $HSP90{\alpha}$ showed higher expression in patients with no lymphovascular invasion (p=0.014). $HSP90{\beta}$ showed a higher expression of squamous cell carcinoma (p=0.003), and an over expression of glucose-related protein (GRP94) was significantly associated with poor differentiation (p=0.048). However, none of the HSP90 proteins showed a significant association with the survival status in patients with NSCLC. This study also indicates that $HSP90{\alpha}$ might contribute more to the carcinogenesis of NSCLC than $HSP90{\beta}$, and GRP94 and isoform selectivity should be considered when HSP90 inhibitors are studied or utilized in the treatment of NSCLC.

열충격 단백질(heat shock proteins, HSPs)은 다양한 종양에서 과발현 되고, 종양이 형성되는 과정이나 그 예후에 영향을 주며, 분자량에 따라 HSP27, HSP60, HSP90, HSP100 등으로 구분한다. Heat shock protein90은 세포 내 불안정한 단백질을 보호하는 역할을 통해 질병의 유지에 기여하는데, 정상 조직에 비해 종양 세포에서 높은 수준으로 발현된다고 보고되었다. 이에 본 연구에서는 우리나라 사망원인 1위인 폐암 중 비소세포 폐암에서 Heat shock protein90 family 발현과 비소세포 폐암환자의 임상적 특징과의 상관관계를 분석하여 종양의 생물학적 표지자로서의 가능성을 조사하였다. HSP90 family의 발현과 임상병리학적 특성 및 생존율과의 상관관계를 분석한 결과 $HSP90{\alpha}$는 림프혈관강 침윤이 되지 않은 환자에서 높은 발현을 보였고(p=0.014), $HSP90{\beta}$ 은 조직학적 형태에서 편평상피세포 암종에서 높은 발현을 보였으며(p=0.003), GRP94 은 분화도가 낮을수록 높은 발현을 나타내었다(p=0.048). 생존율은 $HSP90{\alpha}$, $HSP90{\beta}$, GRP94 모두 발현 차이에 대한 유의성이 없었다. 본 연구를 통해 miRNA-126, miRNA-155, miRNA-200c의 발현은 비소세포 폐암의 진단을 위한 생물학적 표지자 및 예후 인자로서 사용될 수 있을 것으로 사료된다. 그리고 비소세포 폐암의 치료용으로 HSP90 family가 고려되어야 할 것이며, GRP94가 종양의 예후예측을 위한 중요한 인자라 사료된다.

Keywords

References

  1. International Agency for Research on Cancer. GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012 [Internet]. Lyon: International Agency for Research on Cancer; 2012 [cited 2017 August 01] Available from http://globocan.iarc.fr/Pages/fact_sheets_cancer/.
  2. National Cancer Information Center. Cancer Statistics in Korea. 2014 [Internet]. Goyang: National Cancer Information Center; 2014 [cited 2017 August 01] Korea Available from: http://www.cancer.go.kr/mbs/cancer/subview.jsp
  3. Brandao GD, Brega EF, Spatz A. The role of molecular pathology in non-small-cell lung carcinoma-now and in the future. Curr Oncol. 2012;19(1):24-32.
  4. Kingstone RE, Baldwin, AS, Sharp PA. Regulation of heat shock protein 70 gene expression by c-myc. Nature. 1984;312(5991):280-282. https://doi.org/10.1038/312280a0
  5. Konno A, Sato N, Yagihashi A, Torigoe T, Cho JM, Torimoto K, et al. Heat or stress inducible transformation associated cell surface antigen on the H-ras oncogene transfected rat fibroblasts. Cancer Res. 1989;49(23):6578-6582.
  6. Shrivastava PK, Maki RG. Stress induced proteins in immune response to cancer. Curr Top Microbiol Immunol. 1991;167:109-123.
  7. Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell. 1998;92(3):351-366. https://doi.org/10.1016/S0092-8674(00)80928-9
  8. Garcia-Carbonero R, Carnero A, Paz-Ares L. Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol. 2013;14(9):358-369. https://doi.org/10.1016/S1470-2045(13)70169-4
  9. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell. 2007; 131(1):121-135. https://doi.org/10.1016/j.cell.2007.07.036
  10. Dobo C, Stavale JN, Lima Fde O, Ribeiro DA, Arias V, Gomes TS, et al. HSP27 is Commonly Expressed in Cervical Intraepithelial Lesions of Brazilian Women. Asian Pac J Cancer Prev. 2013; 14(9):5007-5010. https://doi.org/10.7314/APJCP.2013.14.9.5007
  11. Wu GQ, Liu NN, Xue XL, Cai LT, Zhang C, Qu QR, et al. Multiplex Real-time PCR for RRM1, XRCC1, TUBB3 and TS mRNA for prediction of response of non-small cell lung cancer to chemoradiotherapy. Asian Pac J Cancer Prev. 2014;15(10): 4153-4158. https://doi.org/10.7314/APJCP.2014.15.10.4153
  12. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  13. Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ. Targeting HSP90 for cancer therapy. Br J Cancer. 2009;100(10):1523-1529. https://doi.org/10.1038/sj.bjc.6605066
  14. Sharp S. Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res. 2006;95:323-348.
  15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. https://doi.org/10.1016/j.cell.2011.02.013
  16. Beck R, Dejeans N, Glorieux C, Pedrosa RC, Vasquez D, Valderrama JA, Calderon PB, Verrax J. Molecular chaperone Hsp90 as a target for oxidant-based anticancer therapies. Curr Med Chem. 2011;18(18):2816-2825. https://doi.org/10.2174/092986711796011256
  17. Moser C, Lang SA, Stoeltzing O. Heat-shock protein 90(Hsp90) as a molecular target for therapy of gastrointestinal cancer. Anticancer Res. 2009;29(6):2031-2042.
  18. Whitesell L, Lindquist SL. Hsp90 and chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761-772. https://doi.org/10.1038/nrc1716
  19. Jia JM, Liu F, Xu XL, Guo XK, Jiang F, Cherfaoui B, et al. Synthesis and evaluation of a novel class Hsp90 inhibitors containing 1-phenylpiperazine scaffold. Bioorg Med Chem Lett. 2014;24(6):1557-1561. https://doi.org/10.1016/j.bmcl.2014.01.070
  20. Jiang H, Duan B, He C, Geng S, Shen X, Zhu H, et al. Cytoplasmic $HSP90{\alpha}$ expression is associated with perineural invasion in pancreatic cancer. Int J Clin Exp Pathol. 2014; 7(6):3305-3311.
  21. Tian WL, He F, Fu X, Lin JT, Tang P, Huang YM, et al. High expression of heat shock protein 90 alpha and its significance in human acute leukemia cells. Gene. 2014;542(2):122-128. https://doi.org/10.1016/j.gene.2014.03.046
  22. Romaniuk A, Lyndin M. Immune microenvironment as a factor of breast cancer progression. Diagnostic Pathology. 2015;10:79. https://doi.org/10.1186/s13000-015-0316-y
  23. Zuo DS, Dai J, Bo AH, Fan J, Xiao XX. Significance of expression of heat shock $protein90{\alpha}$ in human gastric cancer. World J Gastroenterol. 2003;9(11):2616-2618. https://doi.org/10.3748/wjg.v9.i11.2616
  24. Jahns F, Wilhelm A, Greulich KO, Mothes H, Radeva M, Wolfert A, et al. Impact of butyrate on PKM2 and $HSP90{\beta}$ expression in human colon tissues of different transformation stages: a comparison of gene and protein data. Genes Nutr. 2012;7(2):235-246. https://doi.org/10.1007/s12263-011-0254-6
  25. Mayer P, Harjung A, Breinig M, Fischer L, Ehemann V, Malz M, et al. Expression and therapeutic relevance of heat-shock protein 90 in pancreatic endocrine tumors. Endocr Relat Cancer. 2012;19(3):217-232. https://doi.org/10.1530/ERC-11-0227
  26. Lee JH, Kang KW, Kim JE, Hwang SW, Park JH, Kim SH, et al. Differential expression of heat shock protein 90 isoforms in small cell lung cancer. Int J Clin Exp Pathol. 2015;8(8):9487-9493.
  27. Biaoxue R, Xiling J, Shuanying Y, Wei Z, Xiguang C, Jinsui W, et al. Upregulation of Hsp90-beta and annexin A1 correlates with poor survival and lymphatic metastasis in lung cancer patients. J Exp Clin Cancer Res. 2012;31(1):70. https://doi.org/10.1186/1756-9966-31-70
  28. Chhabra S, Jain S, Wallace C, Hong F. Liu B. High expression of endoplasmic reticulum chaperone grp94 is a novel molecular hallmark of malignant plasma cells in multiple myeloma. J Hematol Oncol. 2015;8:77. https://doi.org/10.1186/s13045-015-0177-6
  29. Shen J, Yao L, Lin YG, DeMayo FJ, Lydon JP, Dubeau L, et al. Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development. Oncotarget. 2016;7(12):14885-14897.
  30. Wang Q, He Z, Zhang J, Wang Y, Wang T, Tong S, et al. Overexpression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance. Cancer Detect Prev. 2005;29(6):544-551. https://doi.org/10.1016/j.cdp.2005.09.010