• Title/Summary/Keyword: Heat-dissipation

Search Result 519, Processing Time 0.023 seconds

Review of Technology Development of High Heat Dissipative Insulating Sheet (고방열 절연시트의 기술개발 동향)

  • Yoo, Myong-Jae;Park, Seong-Dae;Lim, Ho-Sun;Lee, Woo-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • Currently due to increasing integration of various electronic devices and need of multi-functions, more and more heat is produced and for electronic devices to achieve maximum performance with optimum life time, heat dissipation is critical. A solution to such problems is use of high heat dissipative insulating sheet. In this paper status of current products are introduced and several technology aspects to meet the demand of increased heat dissipation needs is introduced.

Numerical analysis of a plain-fin type heat exchanger with two tubes in a crevice-type heat pipe

  • Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.686-691
    • /
    • 2016
  • This paper employs numerical tools to obtain an optimal thermal design of a heat exchanger with plain-fins. This heat exchanger is located at the condensing section of a crevice-type heat pipe. The plain-fins in the heat exchanger are radically mounted to two tubes in the condensing section. To obtain the optimal design parameters, a computational fluid dynamics technique is introduced and applied to different placement configurations in a system module. Owing to its effects on the heat pipe performance, the temperature difference between the tube surfaces and ambient air is investigated in detail. A greater heat dissipation rate occurs when the plain-fin offsets change from 2 to 3 mm. When this temperature difference is ${\Delta}T=70^{\circ}C$, the upper part of the plain-fins undergoes an accumulation of heat. At below $70^{\circ}C$, the dissipation of heat is accepted. A rectangular plain-fin geometry with varying widths and heights does not have a significant impact on the heat dissipation through-out the overall system. In addition, the temperature distributions between different plain-fin pitches show an equal profile even with different fin pitches.

Heat Dissipation Design for KW Class Power Control Unit Mounted on Aircraft Store (항공기 장착물에 탑재되는 KW급 전력변환장치의 방열설계)

  • Choi, Seok-min;Kim, Hyung-jae;Jung, Jae-won;Lee, Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.261-266
    • /
    • 2020
  • When a KW-class power control unit is installed in an aircraft installation, a heat dissipation design for a large amount of heat generated during power conversion should be considered. Failure to provide adequate heat dissipation can lead to equipment malfunction and fire, which can be a fatal factor in aviation operations. This paper describes the heat dissipation design of a KW-class power control unit installed in aircraft installation. The design and manufacturing test were conducted through computerized analysis, and the analysis model was corrected by confirming the rapid heat generation phenomenon of the heating element due to high power control. After the model revision, the design was improved, and the high-temperature operation test of the US military standard MIL-STD-810G was performed to confirm the feasibility of the improved design.

Preparation of Flower-Like Al2O3 Nanostructures by Hydrothermal Synthesis and Study of Thermal Properties of BN/Al2O3 Composites (수열합성법을 이용한 Flower-Like 형상의 Al2O3 Nanostructure 제조 및 BN/Al2O3 복합체의 방열 특성 연구)

  • Noh Geon Song;Yong Jin Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.633-637
    • /
    • 2023
  • Recently, with the development of the smart device market, the integration of high-functional devices has increased the heat density, causing overload of the device, and resulting in various problems such as shortened lifespan, performance degradation, and failure. Therefore, research on heat dissipation materials is being actively conducted to realize next-generation electronic products. The heat dissipation material is characterized in that it is easy to dissipate heat due to its high thermal conductivity and minimizes leakage current flowing through the heat dissipation material due to its low electrical conductivity. In this study, flower-shaped Al2O3 and BN composites were engineered with a simple hydrothermal synthesis approach, and their thermal conductivity characteristics were compared and evaluated for each synthesis condition for the application to a heat dissipation material. Spherical BN and flower-shaped Al2O3 were easily obtained, and SEM/EDS analyses confirmed the uniform presence of BN between the Al2O3, and it can be expected that these shapes can affect the thermal conductivity.

Increase heat dissipation efficiency of Al plate according to surface roughness treatment by sandpaper or sandblast (사포, 샌드블라스트로 표면 거칠기 처리에 따른 알루미늄 판의 방열 효율 증대)

  • Lee, Dong-Hee;Lee, Jong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.170-178
    • /
    • 2019
  • Recently, as the interest in energy savings has increased, there has been increasing use of LED lighting, which is an eco-friendly device that replaces high energy consuming fluorescent lamps and incandescent lamps. In the case of a high output LED, however, the life time is shortened due to deterioration caused by heat generation. As a solution to this problem, this paper evaluated the LED life extension effect by increasing the convective heat transfer coefficient of the heat sink surface for LED packaging. A roughing process was carried out using sandpaper and sand blasting. The changes in surface roughness and surface area after each surface treatment process were evaluated quantitatively and the convective heat transfer coefficient was measured. When sandblasting and sandpaper were used to roughen the aluminum surface, a higher convection heat transfer coefficient was obtained compared to the untreated case, and a high heat dissipation efficiency of 82.76% was obtained in the sandblast treatment. Therefore, it is expected that the application of heat dissipation to the heat sink will extend the lifetime of the LED significantly and economically by increasing the heat efficiency.

An Analysis and Experimental Study for Thermal Design Verification of Satellite Electronic Equipment (인공위성 전장품의 열설계 검증을 위한 해석 및 실험적 연구)

  • Kim Jung-Hoon;Jun Hyoung Yoll;Yang Koon-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.91-95
    • /
    • 2005
  • A heat dissipation modeling method of EEE parts is developed for thermal design and analysis of an satellite electronic equipment. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is developed instead of conventional lumped capacity nodes. The thermal plates are projected to the printed circuit board and can be modeled and modified easily by numerically preprocessing programs according to design changes. These modeling methods are applied to the thermal design and analysis of CTU and verified by thermal cycling and vacuum tests.

  • PDF

A study on the heat cycle aging of insulation materials in large generator stator windings (대형발전기 고정자권선 절연재료의 열 사이클에 의한 열화에 관한 연구)

  • 김희곤;박영관
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.553-557
    • /
    • 1996
  • Heat cycle aging of insulating materials in large generator stator winding has been investigated using both on-line and off-line test methods. On this study, principally, off-line test against actual generator in service was carried out to acquire information about polarization index(PI) and dissipation factor, dissipation factor tip-up, maximum partial discharge for the purpose of remnant breakdown voltage and life assessment. It was found from the tests that both dissipation factor and maximum partial discharge decreased with the increase of operating hours and starting numbers. It was found from off-line tests that the remnant breakdown voltage had a strong relationship with both dissipation factor and maximum partial discharge the remnant breakdown voltage as a results of both operating hours and starting number and the nondestructive tests were proposed as parameters which can predict the remnant lifetime of insulating materials in large generator stator windings. (author). 8 refs., 8 figs., 2 tabs.

  • PDF

Thermal Dissipation Performance of the Ventilated Brake Disc having Helical Grooved Vent (나선형 홈이 있는 벤틸레이티드 브레이크 디스크의 열 방출 성능)

  • Choi, Young;Choi, Ju-Won;Kim, Hyung-Man;Seo, Yong-We
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.117-123
    • /
    • 2004
  • A brake disc with helical grooved vent in radial direction is proposed for the improvement of thermal dissipation. The heat transfer phenomenon is analyzed far both the proposed disc and the conventional one using finite element method. The thermal dissipation is considerably influenced by the geometrical differences of the brake discs. The results of the analysis show that the proposed brake disc with helical grooved vent has the improved performance to dissipate the thermal energy more effectively.

Analysis of the experimental cooling performance of a high-power light-emitting diode package with a modified crevice-type vapor chamber heat pipe

  • Kim, Jong-Soo;Bae, Jae-Young;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.801-806
    • /
    • 2015
  • The experimental analysis of a crevice-type vapor chamber heat pipe (CVCHP) is investigated. The heat source of the CVCHP is a high-power light-emitting diode (LED). The CVCHP, which exhibits a bubble pumping effect, is used for heat dissipation in a high-heat-flux system. The working fluid is R-141b, and its charging ratio was set at 60 vol.% of the vapor chamber in a heat pipe. The total thermal conductivity of the falling-liquid-film-type model, which was a modified model, was 24% larger than that of the conventional model in the LED package. Flow visualization results indicated that bubbles grew larger as they combined. These combined bubbles pushed the working fluid to the top, partially wetting the heat-transfer area. The thermal resistance between the vapor chamber and tube in the modified design decreased by approximately 32%. The overall results demonstrated the better heat dissipation upon cooling of the high-power LED package.

Numerical Analysis of Heat Transfer and Fabrication of Carbon Material for Heat Dissipation in Solar Panel (태양광 패널 적용 방열용 탄소소재의 제조 및 열전달 수치해석)

  • Park, Hun-Su;Kang, Chul-Hee;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.82-90
    • /
    • 2019
  • This analysis demonstrates the effective removal of heat generated from a solar panel's output degradation factor solar cells (the solar panel's output deterioration factor), and solves the problems of oxidation and corrosion in existing metal heat sinks. The heat-dissipating test specimen was prepared using carbon materials; then, its thermal conductivity and its effectiveness in reducing temperatures were studied using heat transfer numerical analysis. As a result, the test specimen of the 30g/㎡ basis weight containing 80% of carbon fiber impregnated with carbon ink showed the highest thermal conductivity 6.96 W/(m K). This is because the surface that directly contacted the solar panel had almost no pores, and the conduction of heat to the panels appeared to be active. In addition, a large surface area was exposed to the atmosphere, which is considered advantageous in heat dissipation. Finally, numerical analysis confirmed the temperature reduction effectiveness of 2.18℃ in a solar panel and 1.08℃ in a solar cell, depending on the application of heat dissipating materials.