• Title/Summary/Keyword: Heat-dissipation

Search Result 519, Processing Time 0.024 seconds

A Study on the Heat Dissipation of LED Streetlight Using PCM (PCM을 이용한 LED 가로등의 방열에 관한 연구)

  • Jung, Eui-Chan;Chang, Sung-Ho;Kang, Seoug-Wan;Kim, Min-Ho;Nho, Kwon-Hak;Lee, Young-Wook;Choi, Yu-Bok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.79-84
    • /
    • 2010
  • In recent years, conventional streetlight is replaced by LED streetlight to reduce power consumption dramatically and to maximize lighting effects. However the characteristic of power LED itself driven by high current to increase the illumination, we need to develop effective heat release device. This study suggests new concept of heat dissipation device using PCM (Phase Change Material) and shows an experiment results to investigate thermal effects of PCM.

The Effect of Powder Characteristics on the Permeability of Copper Powder Wicks in Heat Pipe Applications

  • Lin, Yueh-Ju;Hwang, Kuen-Shyang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.318-319
    • /
    • 2006
  • The thermal dissipation performance of sintered heat pipes is usually determined by the capillarity and permeability of the Cu powder wicks. Since the capillary provided by the Cu powder is usually large enough to draw water from the condenser end to the evaporator end, the permeability has become the controlling factor. In this study, Cu powders with different particle sizes and shapes were loosely sintered, and their permeabilities were compared. The results show that more complicated shapes, finer particle sizes, lower porosities, and rougher pore surfaces give lower permeability and thermal dissipation.

  • PDF

Large Area Wafer-Level High-Power Electronic Package Using Temporary Bonding and Debonding with Double-Sided Thermal Release Tape (양면 열박리 테이프 기반 임시 접합 공정을 이용한 대면적 웨이퍼 레벨 고출력 전자패키지)

  • Hwang, Yong-Sik;Kang, Il-Suk;Lee, Ga-Won
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.36-40
    • /
    • 2022
  • High-power devices, such as LEDs and radars, inevitably generate a large amount of heat, which is the main cause of shortening lifespan, deterioration in performance, and failure of electronic devices. The embedded IC process can be a solution; however, when applied to large-area substrates (larger than 8 in), there is a limit owing to the difficulty in the process after wafer thinning. In this study, an 8-in wafer-level high-power electronic package based on the embedded IC process was implemented with temporary bonding and debonding technology using double-sided thermal release tape. Good heat-dissipation characteristics were demonstrated both theoretically and experimentally. These findings will advance the commercialization of high-power electronic packaging.

Experimental Verification of Heat Sink for FPGA Thermal Control (FPGA 열제어용 히트싱크 효과의 실험적 검증)

  • Park, Jin-Han;Kim, Hyeon-Soo;Ko, Hyun-Suk;Jin, Bong-Cheol;Seo, Hak-Keum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.789-794
    • /
    • 2014
  • The FPGA is used to the high speed digital satellite communication on the Digital Signal Process Unit of the next generation GEO communication satellite. The high capacity FPGA has the high power dissipation and it is difficult to satisfy the derating requirement of temperature. This matter is the major factor to degrade the equipment life and reliability. The thermal control at the equipment level has been worked through thermal conduction in the space environment. The FPGA of CCGA or BGA package type was mounted on printed circuit board, but the PCB has low efficient to the thermal control. For the FPGA heat dissipation, the heat sink was applied between part lid and housing of equipment and the performance of heat sink was confirmed via thermal vacuum test under the condition of space qualification level. The FPGA of high power dissipation has been difficult to apply for space application, but FPGA with heat sink could be used to space application with the derating temperature margin.

A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation

  • Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.287-302
    • /
    • 2020
  • This investigation deals with a size-dependent coupled thermoelasticity analysis based on Green-Naghdi (GN) theory in nano scale using a new modified nonlocal model of heat conduction, which is based on the GN theory and nonlocal Eringen theory of elasticity. In the analysis based on the proposed model, the nonlocality is taken into account in both heat conduction and elasticity. The governing equations including the equations of motion and the energy balance equation are derived using the proposed model in a nano beam resonator. An analytical solution is proposed for the problem using the Laplace transform technique and Talbot technique for inversion to time domain. It is assumed that the nano beam is subjected to sinusoidal thermal shock loading, which is applied on the one of beam ends. The transient behaviors of fields' quantities such as lateral deflection and temperature are studied in detail. Also, the effects of small scale parameter on the dynamic behaviors of lateral deflection and temperature are obtained and assessed for the problem. The proposed GN-based model, analytical solution and data are verified and also compared with reported data obtained from GN coupled thermoelasticity analysis without considering the nonlocality in heat conduction in a nano beam.

The Effect of Spacer on Microclimate and Comfort Sensation in Protective Clothing for Firefighters

  • Chung, Gi-Soo;Lee, Dae-Hoon
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.564-566
    • /
    • 2002
  • Protective clothing for firefighters typically consists of a flame resistant outer shell and inner layers. The inner layers are generally composed of a moisture barrier and a thermal barrier. On performing the task in fire place the heat and perspiration generated from the body become trapped inside the protective clothing. Those heat and moisture result into heat-stress and physical fatigue of fire fighter, which hinder the work. Therefore, the system of clothing designs and material layers must be chosen carefully to balance protection and comfort. 3 kinds of protective clothing of 3 layer structure were used in the experiment of physiological comfort. From the comparison of wear trials with the 3 kinds of layers in firefighters clothing, it indicates that the moisture dissipation of A+B2+C was highest, following A+BI+C andA+B3+C. And the heat dissipation of A+BI+C and A+B2+C were better than A+B3+C. In the protective clothing with A+B3+C, heat and perspiration generated through exercise remained in clothing system long and caused discomfort.

Performance Characteristics Analysis of Evaporator in Ammonia-Water Rankine Cycle Based on Exergy and Entransy (암모니아-물 랭킨사이클의 증발기에서의 엑서지 및 엔트랜시 성능 특성 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.621-628
    • /
    • 2019
  • The use of the ammonia-water zeotropic mixture as a working fluid in the power generating system has been considered as a proven technology for efficient recovery of low-grade heat sources. This paper presents a thermodynamic performance analysis for ammonia-water evaporator using low-grade heat source, based on the exergy and entransy which has been recently introduced as a physical quantity to describe the heat transfer ability of an object. In the analysis, effects of the ammonia mass fraction and source temperature of the binary mixture are investigated on the system performance such as heat transfer, effectiveness, exergy destruction, entransy dissipation, and entransy dissipation based thermal resistance. The results show that the ammonia mass concentration and the source temperature have significant effects on the thermodynamic system performance of the ammonia-water evaporator.

Effects of some factors on the thermal-dissipation characteristics of high-power LED packages

  • Ji, Peng Fei;Moon, Cheol-Hee
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Decreasing the thermal resistance is the critical issue for high-brightness light-emitting diodes. In this paper, the effects of some design factors, such as chip size (24 and 35 mil), substrate material (AlN and high-temperature co-fired ceramic), and die-attach material (Ag epoxy and PbSn solder), on the thermal-dissipation characteristics were investigated. Using the thermal transient method, the temperature sensitivity parameter, $R_{th}$ (thermal resistance), and junction temperature were estimated. The 35-mil chip showed better thermal dissipation, leading to lower thermal resistance and lower junction temperature, owing to its smaller heat source density compared with that of the 24-mil chip. By adopting an AlN substrate and a PbSn solder, which have higher thermal conductivity, the thermal resistance of the 24-mil chip can be decreased and can be made the same as that of the 35-mil chip.

Comparative Study on the Characteristics of Heat Dissipation using Silicon Carbide (SiC) Powder Semiconductor Module (탄화규소(SiC) 반도체를 사용한 모듈에서의 방열 거동 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.89-93
    • /
    • 2018
  • Ceramic substrates applied to power modules of electric vehicles are required to have properties of high thermal conductivity, high electrical insulation, low thermal expansion coefficient and resistance to abrupt temperature change due to high power applied by driving power. Aluminum nitride and silicon nitride, which are applied to heat dissipation, are considered as materials meeting their needs. Therefore, in this paper, the properties of aluminum nitride and silicon nitride as radiator plate materials were compared through a commercial analysis program. As a result, when the process of applying heat of the same condition to aluminum nitride was implemented by simulation, the silicon nitride exhibited superior impact resistance and stress resistance due to less stress and warping. In terms of thermal conductivity, aluminum nitride has superior properties as a heat dissipation material, but silicon nitride is more dominant in terms of reliability.

Evaluation of Heat Transfer Characteristics of PV Module with Different Backsheet (백시트 종류에 따른 태양전지 모듈의 방열 특성 평가)

  • Bae, Soohyun;Oh, Wonwook;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.39-42
    • /
    • 2018
  • When the PV module is illuminated in a high temperature region, solar cells are also exposed to the high temperature external environment. The operating temperature of the solar cell inside the module is increased, which causes the power drops. Various efforts have been made to reduce the operating temperature and compensate the power of solar cells according to the outdoor temperature such as installing of a cooling system. Researches have been also reported to lower the operating temperature of solar cells by improving the heat dissipation properties of the backsheet. In this study, we conducted a test to measure the internal temperature of each module components and the external temperature when the light was irradiated according to the surrounding temperature. Backsheets with different thermal conductivities were compared in the test. Finally, in order to explain the temperature difference between the solar cell and the outside of the module, we proposed an evaluation method of the heat transfer characteristics of photovoltaic modules with different backsheet.