• Title/Summary/Keyword: Heat-Sink

Search Result 563, Processing Time 0.027 seconds

Development of a Drain-Type Electronic Dehumidifier Using Thermoelectric Element (열전소자를 이용한 배수형 전자제습기 개발)

  • Kang, Deok-Hong;Kim, Seong-Hwan;Kim, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3524-3528
    • /
    • 2007
  • In this study, the Peltier effect was applied to eliminate moistures in the air enclosed by a cabinet. We have developed the new electronic dehumidifier which has a new function of automatically evaporating the condensed water inner cabinet into the outside air. To obtain this function, the processes of dehumidification is that it condensed the moistures on the cold side heat sink and drained it into the hot side heat sink by the both gravitational and capillary forces and the droplets on the hot side heat sink surface was evaporated into the air outside the cabinet by the heat conducted through the hot side heat sink surface and the forced heat convection through the fan for cooling hot side heat sink. Compared to existing electronic dehumidifiers, this manufactured one showed a good performance that the electric power consumption for the same dehumidifying quantity was reduced by 50% compared with that of existing ones.

  • PDF

A Study on Development of Porous SiC Ceramic Heat Sink from Solar Wafering Slurry (태양광 웨이퍼링 슬러리 재생 다공성 SiC 세라믹 히트싱크 개발에 관한 연구)

  • An, Il-Yong;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2002-2008
    • /
    • 2012
  • In recent years, while the importance of thermal management has been emphasized due to smaller electronic products, various materials have been used as heat sink. In this study, porous ceramic heat sink was developed with SiC, successfully separated from the slurry of SiC occurring in solar energy materials industry and the thermal performance of porous SiC heat sink has been compared with those of aluminum heat sink and pure SiC heat sink through experiment. From the experimental results, it was verified that porous recycled SiC heat sink has better thermal performance than aluminum heat sink since its micropores increase the heat transfer area. In addition, the effect of the micropores on thermal performance has been quantified by increasing convective heat transfer coefficient with numerical analysis.

Numerical Investigation on the Thermal Performance of a Cooling Device for a CPV Module (고집광 태양광 모듈용 냉각 장치의 열성능에 대한 수치 해석적 연구)

  • Do, Kyu Hyung;Kim, Taehoon;Han, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In the present study, the effects of the heat spreader thickness and the heat sink size on the thermal performance of a cooling device for a concentrating photovoltaic (CPV) module were numerically investigated. Numerical simulation was conducted by using the simulation tool ICEPAK, commercial software based on the finite volume method. Numerical results were validated by comparing the existing experimental data. The thermal performance of a cooling device, which consisted of a heat spreader and a natural convective heat sink, was evaluated with varying the heat spreader thickness and the heat sink size. The geometric configuration of the natural convective heat sink, such as the fin height, the fin spacing, and the fin thickness, was optimized by using the existing correlation. The numerical results showed that the thermal performance of the cooling device increased as the heat spreader thickness or the heat sink size increased. Also, it was found that the spreading thermal resistance plays an important role in the thermal performance of the cooling device which has the localized heat source.

Cooling performance of an electronic system including electronic components mounted with heat sink (히트 싱크 부착 전자부품을 가진 통신시스템의 냉각성능 연구)

  • No, Hong-Gu;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.253-266
    • /
    • 1998
  • A numerical study on the cooling performance for electronic components mounted with heat sink in an electronic system has been performed. The model of electronic system consisted with lower and upper modules in which the electronic components mounted with heat sink were arrayed. To find better configuration under a given fan power for effective cooling, the cases called 'No heat sink','Both heat sinks','Lower heat sinks', and 'Upper heat sinks' were tested. The results showed that the cooling performance in 'Upper heat sinks' was the best among four cases.

Fabrication of GaAs Gunn Diodes With A Double Heat Sink (이중 방열 구조를 갖는 GaAs 건 다이오드 제작)

  • Kim, Mi-Ra;Rhee, Jin-Koo;Chae, Yeon-Sik;Lim, Hyun-Jun;Choi, Jae-Hyun;Kim, Wan-Joo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.1-6
    • /
    • 2009
  • We fabricated Gunn diodes with a double heat sink which has anode heat sink as well as cathode heat sink for efficient heat dissipation. We compared the DC characteristics of a double heat sink diode with a conventional cathode heat sink Gunn diode. It was shown that the Gunn diode with a single heat sink has the threshold voltage of 3 V, the peak current of 744 mA and the breakdown voltage of 4.8 V. Also, the Gunn diode with a double heat sink showed the threshold voltage of 2.5 V, the peak current of 778 mA and the breakdown voltage over 5 V.

An Experiment on Heat Dissipation from Aluminum foam Heat Sinks in an Air Multi-Jet Impingement (다중 충돌 공기제트에서 발포 알루미늄 방열기의 방열 특성 실험)

  • Lee, Myeong-Ho;Kim, Seo-Yeong;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1115-1122
    • /
    • 2002
  • The present experiment investigates the effects of pore density f of aluminum foam heat sinks, the jet-to-jet spacing X and the nozzle plate-to-target surface spacing H of 3$\times$3 square impinging arrays on the averaged Nusselt number. The performance of the aluminum foam heat sinks and the rectangular plate heat sink is evaluated in terms of the enhancement factor. /equation omitted/. The multiple impinging jet with X/d=4.0 displays higher Nusselt numbers than single impinging jet for 12.0$\leq$H/d$\leq$20.0. With the variation of the jet-to-jet spacing, the aluminum foam heat sink of 10 PPI show higher Nusselt numbers than the 20 and 40 PPI aluminum foam heat sinks. Further, the 10 PPI aluminum foam heat sink demonstrates 26% higher enhancement factor than the rectangular plate heat sink in the range of 7000$\leq$Re$\leq$11000.

Heat Transfer Characteristics of Inclined Jet Impinging on a Pin Fin Heat Sink (경사진 충돌제트를 이용한 핀 휜 히트싱크의 열특성 연구)

  • Hong, Ki-Ho;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.961-967
    • /
    • 2004
  • An inclined jet impinging on a pin fin heat sink is proposed and investigated experimentally. To investigate the flow pattern, flow visualization using fluorescence and velocity measurement using particle image velocimetry(PIV) are conducted with water. The jet impinges over a wide span of the heat sink with a large recirculation in the upper free space and occasionally with another smaller one in the upstream corner. Further, thermal experimentation is conducted using air to obtain temperature profiles using a thermocouple rake in the air and using thermal image on the heat sink back plate, with impinging angles of 35, 45 and 55 degrees. The Reynolds number range based on the nozzle slot is varied from 1507 to 6405. The results show that impinging angle of 55 degree shows the largest heat transfer capability. The results of thermal experiment are compared and discussed with those of flow visualization.

Heat Pipe Heat Sink Development for Electronics Cooling (전자냉각용 히트파이프 히트싱크 개발)

  • 이기우;박기호;이석호;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.664-670
    • /
    • 2002
  • A heat sink (HS) system using heat pipes for electronics systems was studied. The experimental results indicate that a cooling capacity of up to 150w at an overall temperature difference of $50^{\circ}C$ can be attainable. The heat sink design program also showed that a computer simulation can predict the most of the parameters involved. To do so, however, the interior temperature distribution had to be verified by experimental results. The current simulation results were close to the experimental results in acceptable range. The simulation study showed that the design program can be a good tool to predict the effects of various parameters involved in the optimum design of the heat sink.

Performance Evaluation of Heat Sink for Cooling of LED Projector (LED 프로젝터 방열용 히트싱크의 성능평가)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Jeon, Dong-Soon;Kim, Seon-Chang;Son, Kwang-Eun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1167-1171
    • /
    • 2008
  • The flow and thermal performance of the skiving and louver fin type heat sinks for the cooling system of the small LED projector were experimentally evaluated. A small fan tester based on AMCA standards was used to control and measure the air flow rate into the heat sink. Three heat blocks were used to simulate the heat and light sources(red, green and blue) of the small LED projector. We measured the pressure drop, temperatures and input power at the specific air flow rate and discussed those results. As a result, it is found that the louver fin type heat sink has higher pressure drop and lower thermal resistance than the skiving type. From the comparison of the temperature of the heat block between skiving and louver fin type, the louver fin type heat sink was found to be more suitable for cooling the high power heat source than skiving type. The thermal performance of the fan-sink(louver fin type) system was discussed with the picture taken by a thermal video.

  • PDF

Shape Optimization of a Plate-Fin Type Heat Sink with Triangular-Shaped Vortex Generator

  • Park, Kyoungwoo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1590-1603
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for the thermal stability is performed numerically. The optimum solutions in the heat sink are obtained when the temperature rise and the pressure drop are minimized simultaneously. Thermal performance of heat sink is influenced by the heat sink shape such as the base-part fin width, lower-part fin width, and basement thickness. To acquire the optimal design variables automatically, CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used for the constrained nonlinear optimization problem. The results show that the optimal design variables are as follows; B$_1$=2.584 mm, B$_2$=1.741 mm, and t=7.914 mm when the temperature rise is less than 40 K. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The relationship between the pressure drop and the temperature rise is also presented to select the heat sink shape for the designers.