• Title/Summary/Keyword: Heat exposure

Search Result 540, Processing Time 0.039 seconds

Prediction of Exposure to 1763MHz Radiofrequency Radiation Using Support Vector Machine Algorithm in Jurkat Cell Model System

  • Huang Tai-Qin;Lee Min-Su;Bae Young-Joo;Park Hyun-Seok;Park Woong-Yang;Seo Jeong-Sun
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2006
  • We have investigated biological responses to radiofrequency (RF) radiation in in vitro and in vivo models. By measuring the levels of heat shock proteins as well as the activation of mitogen activated protein kinases (MAPKs), we could not detect any differences upon RF exposure. In this study, we used more sensitive method to find the molecular responses to RF radiation. Jurkat, human T-Iymphocyte cells were exposed to 1763 MHz RF radiation at an average specific absorption rate (SAR) of 10 W/kg for one hour and harvested immediately (R0) or after five hours (R5). From the profiles of 30,000 genes, we selected 68 differentially expressed genes among sham (S), R0 and R5 groups using a random-variance F-test. Especially 45 annotated genes were related to metabolism, apoptosis or transcription regulation. Based on support vector machine (SVM) algorithm, we designed prediction model using 68 genes to discriminate three groups. Our prediction model could predict the target class of 19 among 20 examples exactly (95% accuracy). From these data, we could select the 68 biomarkers to predict the RF radiation exposure with high accuracy, which might need to be validated in in vivo models.

Protection of Metal Stress in Saccharomyces cerevisiae: Cadmium Tolerance Requies the Presence if Two ATP-Binding Domains of Hsp 104 Protein

  • Lee, Gyeong Hui;Eom, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.514-518
    • /
    • 2001
  • We have explored the importance of two ATP binding domains of Hsp104 protein in protection of yeast cells from cadmium exposure. In the previous study we have discovered that the presence of two ATP binding sites was essential in providing heat sh ock protection as well as rescuing cells from oxidative stress. In this paper we first report wild type cell with functional hsp104 gene is more resistant to cadmium stress than hsp104-deleted mutant cell, judging from decrease in survival rates as a result of cadmium exposure. In order to demonstrate functional role of two ATP binding sites in cadmium defense, we have transformed both wild type (SP1) and hyperactivated ras mutant (IR2.5) strains with several plasmids differing in the presence of ATP binding sites. When an extra copy of functional hsp104 gene with both ATP binding sites was overexpressed with GPD-promoter, cells showed increased survival rate against cadmium stress than mutants with ATP binding sites changed. The degree of protection in the presence of two ATP binding sites was similarly observed in ira2-deleted hyperactivated ras mutant, which was more sensitive to oxidative stress than wild type cell. We have concluded that the greater sensitivity to cadmium stress in the absence of two ATP binding sites is attributed to the higher concentration of reactive oxygen species (ROS) produced by cadmium exposure based on the fluorescence tests. These findings, taken all together, imply that the mechanism by which cadmium put forth toxic effects may be closely associated with the oxidative stress, which is regulated independently of the Ras-cAMP pathway. Our study provides a better understanding of cadmium defense itself and cross-talks between oxidative stress and metal stress, which can be applied to control human diseases due to similar toxic environments.

Occupational Exposure to Physical and Chemical Risk Factors: A Systematic Review of Reproductive Pathophysiological Effects in Women and Men

  • Soleiman Ramezanifar;Sona Beyrami;Younes Mehrifar;Ehsan Ramezanifar;Zahra Soltanpour;Mahshid Namdari;Noradin Gharari
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.17-30
    • /
    • 2023
  • The human reproductive system can be affected by occupational exposure to many physical and chemical risk factors. This study was carried out to review the studies conducted on the issue of the pathophysiological effects of occupational physical and chemical risk factors on the reproductive system of females and males. In this systematic review, the databases such as "Google Scholar," "Pub-Med," "Scopus," and "Web of Science" were used. Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA 2020), the studies included in our study were published between 2000 and 2021. In order to extract the required data, all sections of the articles were reviewed. Out of 57 articles we reviewed, 34 articles were related to field studies and 23 articles to clinical studies. Among them, 43 studies dealt with the pathophysiological effects of chemical agents, six studies dealt with the pathophysiological effects of physical factors, and 8 studies dealt with the pathophysiological effects of physicochemical factors on the human reproductive system. Physical (noise, heat, and radiofrequency radiation) and chemical (such as carbamate and organophosphate pesticides, benzene, toluene, xylene, formaldehyde, NO2, CS2, manganese, lead, nickel, and n-hexane) risk factors had pathophysiological effects on the human reproductive system. The presence of these risk factors in the workplace caused damage to the human reproductive system. The rate of these negative pathophysiological effects can be reduced by performing appropriate managerial, technical, and engineering measures in work environments.

Tailored Sun Safety Messages for Outdoor Workers

  • Sajjad S. Fazel;Shelby Fenton;Nicole Braun;Lindsay Forsman-Phillips;D. Linn Holness;Sunil Kalia;Victoria H. Arrandale;Thomas Tenkate;Cheryl E. Peters
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • Background: Messaging surrounding skin cancer prevention has previously focused on the general public and emphasized how or when activities should be undertaken to reduce solar ultraviolet radiation (UVR) exposure. Generic messages may not be applicable to all settings, and should be tailored to protect unique and/or highly susceptible subpopulations, such as outdoor workers. The primary objective of this study was to develop a set of tailored, practical, harm-reducing sun safety messages that will better support outdoor workers and their employers in reducing the risk of solar UVR exposure and UVR-related occupational illnesses. Methods: We adapted a core set of sun safety messages previously developed for the general population to be more applicable and actionable by outdoor workers and their employers. This study used an integrated knowledge translation approach and a modified Delphi method (which uses a survey-based consensus process) to tailor the established set of sun safety messages for use for outdoor worker populations. Results: The tailored messages were created with a consideration for what is feasible for outdoor workers, and provide users with key facts, recommendations, and tips related to preventing skin cancer, eye damage, and heat stress, specifically when working outdoors. Conclusion: The resulting tailored messages are a set of evidence-based, expert- approved, and stakeholder-workshopped messages that can be used in a variety of work settings as part of an exposure control plan for employers with outdoor workers.

STUDY ON STABILITY, EFFICACY, AND EFFECT OF A CREAM CONTAINING 5% OF RETINYL PALMITATE

  • Ji, Hong-Keun;Jeon, Young-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.3
    • /
    • pp.48-74
    • /
    • 1997
  • Retinlyl Palmitate, the skin normalizerm is useful to promote greater skin elasticity, to diminish lipid peroxidation and skin roughness following UV exposure, and promote a youthfulgeneral skin appearance. In manufacturing creams, Retinyl Palmitate, which is a derivative of retinol, is used since reionol is easily oxidized by heat and light. However, only a small mount of retinol, is used since using a large amount of it may be harmful to its stability. In this study, thermal stability and UV stability of W/O-, W/S-, O/W-, and MLV-type creams containing 5% of retinyl palmitate and 10% of tocopheryl acetate are measured by Chroma Meters, and the content of RP is quantitatively analyzed by HPLC at 25 $^{\circ}C$ and 45 $^{\circ}C$. Also, how RP has been changed by heat, light, etc. is measured by HPLC, and toxicity of the changed substance is studied. Particle size of each type of the cream if measured, cellular renewal is measured by using DHP and Chroma Meters in order to study their efficacy and effect, moisture content is measured by using Corneometer and Tewameter, and how much wrinkles are improved is studied by using Image Analyzer. Development of MLV-type cream containing 5% of RP and 10% of TA, and satisfying conditions for better creams has been successful.

  • PDF

Comparative Verification of Accelerated Degradation Mechanism of Heat-Resistant Steel for High Temperature Plant with that Used in the Field (고온 플랜트용 내열 합금강 가속열화 기구의 현장 사용재 비교 검증)

  • Lee, Seung-Mi;Kim, Jae-Yeon;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.262-269
    • /
    • 2015
  • Accelerated degradation mechanism of the heat-resistant steel for high temperature plant was analysed in terms of microstructure and hardness. In order to simulate the microstructure of the steel actually used at $540^{\circ}C$ in the field, isothermal exposure was carried out at $630^{\circ}C$ up to 4,800 hours. The artificial degradation mechanism was comparatively verified to successfully simulate degradation of the long-time used field material. For the artificially degraded specimens, databases including size and aspect ratio of carbide, chemical composition (i.e., Cr/Mo ratio) of grain boundary carbide were built up. These degradation parameters were suggested as fingerprints for PHM (i.e., prognostics health management) of power plants.

Enhancement of Viability of Weissella cibaria CMU by Low-Temperature Encapsulation (저온 캡슐화에 의한 Weissella cibaria CMU의 생존율 증진 효과)

  • Lee, Da-Eon;Hwang, Hyo-Jeong;Jo, Yu-Na;Jung, Tae-Hwan;Han, Kyoung-Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.171-177
    • /
    • 2018
  • In this study, we aimed to investigate the effects of low-temperature encapsulation on the viability of Weissella cibaria CMU under harsh conditions and in freeze-dried foods during storage. The capsules were prepared by gelation of sodium caseinate at different concentrations (5%, 6%, 7%, and 8%) with a combination of 0.5% gellan gum and 2% $glucono-{\delta}-lactone$. The size distribution of the capsules was determined using a Mastersizer 3000 laser diffraction particle size analyzer. Scanning and transmission electron microscopy revealed that the capsule with 6% sodium caseinate had a smooth and rounded external surface, with reproducibility. The acid, bile, and heat tolerances of the encapsulated cells were significantly higher than those of the control under prolonged acid (5 h), bile (12 and 24 h), and heat (2 h) exposure, respectively. During storage for up to 6 months at $4^{\circ}C$ or $25^{\circ}C$, the viability of encapsulated Weissella cibaria CMU in beef and vegetable rice porridge was effectively improved.

Temperature History of the Concrete Corresponding to Various Curing Sheets in the Low Temperature (저온환경에서의 양생시트 변화에 따른 콘크리트의 온도이력 특성)

  • Baek, Dae-Hyun;Hong, Seak-Min;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.781-784
    • /
    • 2008
  • In this paper, insulating effect and strength development of concrete under low temperature are reported varying curing sheets. According to test results, in temperature -5$^{\circ}$C concrete subject to exposure and air cap condition, result in a frost damage at early age by a fall of below zero temperature. Mean while, the combination of PE film and non-woven fabric maintained around 3 $^{\circ}$C within first 24 hours since placement. For double bubble sheets, concrete temperature maintained above 7$^{\circ}$C due to its excellent heat insulating capability. As a result of core strength test, strength of specimens cured with viny + non-woven fabric and double bubble sheets had higher strength than strength of other specimens due to good heat insulation effect at early age.

  • PDF

Functional switching of eukaryotic 2-Cys peroxiredoxins from peroxidases to molecular chaperones in response to oxidative stress

  • Jang, Ho-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.40-64
    • /
    • 2005
  • Much biochemical information on peroxiredoxins (Prxs) has been reported but a genuine physiological function for these proteins has not been established. We show here that two cytosolic yeast Prxs, cPrxI and II, exist in a variety of forms that differ in their structure and molecular weight (MW) and that they can act both as a peroxidase and as a molecular chaperone. The peroxidase function predominates in the lower MW proteins, whereas the chaperone function is more significant in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causesthe protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, $Cys^{47}$, which serves as an efficient $'H_2O_2-sensor'$ in the cells. The chaperone function of the proteins enhances yeast resistance to heat shock.

  • PDF

The Effects of Surface Oxidation Occurring during Delivery from an Annealing Furnace to a Water Bath on the Microstructure and Tensile Properties of TWIP Steel (소둔로에서 수욕으로 이송 중 발생한 표면 산화가 TWIP 강의 미세조직과 인장 성질에 미치는 영향)

  • Oh, Seon-Keun;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.57-64
    • /
    • 2020
  • In the present study, we investigated whether the surface oxidation of C-bearing TWIP steel ℃curs in the air during specimen delivery from an annealing furnace to a water bath and how the microstructure and tensile properties are influenced by surface oxidation. A cold-rolled Fe-18Mn-0.6 (wt%) steel was exposed in the air for 5 s after annealing at various temperatures (750℃, 850℃ and 1000℃) for 10 min in a vacuum, and then water-quenched. For comparison, another specimen, which had been quartz-sealed in a vacuum, was annealed at 1000℃ for 10 min and immediately water-quenched without exposure to air. The 750℃ and 850℃-annealed specimens and the quartz-sealed specimen showed a γ-austenite single phase in the entire specimen due to negligible surface oxidation. However, the 1000℃-annealed specimen exhibited a dual-phase microstructure consisting of ε-martensite and γ-austenite at the sub-surface due to decarburization. Whereas the specimens without decarburization revealed high elongations of 70-80%, the decarburized specimen exhibited a low elongation of ~40%, indicating premature failure due to cracking inside the decarburized layer with ε-martensite and γ-austenite.