DOI QR코드

DOI QR Code

The Effects of Surface Oxidation Occurring during Delivery from an Annealing Furnace to a Water Bath on the Microstructure and Tensile Properties of TWIP Steel

소둔로에서 수욕으로 이송 중 발생한 표면 산화가 TWIP 강의 미세조직과 인장 성질에 미치는 영향

  • Oh, Seon-Keun (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University)
  • 오선근 (연세대학교 신소재공학과) ;
  • 이영국 (연세대학교 신소재공학과)
  • Received : 2020.03.09
  • Accepted : 2020.03.18
  • Published : 2020.03.30

Abstract

In the present study, we investigated whether the surface oxidation of C-bearing TWIP steel ℃curs in the air during specimen delivery from an annealing furnace to a water bath and how the microstructure and tensile properties are influenced by surface oxidation. A cold-rolled Fe-18Mn-0.6 (wt%) steel was exposed in the air for 5 s after annealing at various temperatures (750℃, 850℃ and 1000℃) for 10 min in a vacuum, and then water-quenched. For comparison, another specimen, which had been quartz-sealed in a vacuum, was annealed at 1000℃ for 10 min and immediately water-quenched without exposure to air. The 750℃ and 850℃-annealed specimens and the quartz-sealed specimen showed a γ-austenite single phase in the entire specimen due to negligible surface oxidation. However, the 1000℃-annealed specimen exhibited a dual-phase microstructure consisting of ε-martensite and γ-austenite at the sub-surface due to decarburization. Whereas the specimens without decarburization revealed high elongations of 70-80%, the decarburized specimen exhibited a low elongation of ~40%, indicating premature failure due to cracking inside the decarburized layer with ε-martensite and γ-austenite.

Keywords

References

  1. L. Remy : Acta Mater., 26 (1978) 443. https://doi.org/10.1016/0001-6160(78)90170-0
  2. J. W. Simmons : Mater. Sci. Eng. A, 207 (1996) 159. https://doi.org/10.1016/0921-5093(95)09991-3
  3. O. Grassel, L. Kruger, G. Frommeyer and L. W. Meyer : Int. J. Plast., 16 (2000) 1391. https://doi.org/10.1016/S0749-6419(00)00015-2
  4. S. -J. Lee, J. Han, S. Lee, S. -H. Kang, S. -M. Lee and Y. -K. Lee : Sci. Rep., 7 (2017) 3573. https://doi.org/10.1038/s41598-017-03862-y
  5. B. C. De Cooman, Y. Estrin and S. K. Kim : Acta Mater., 142 (2018) 283. https://doi.org/10.1016/j.actamat.2017.06.046
  6. F. de las Cuevas and J. G. Sevillano : Rev. Metal., 53 (2017) 1.
  7. S. Kang, Y.-S. Jung, J.-H. Jun and Y.-K. Lee : Mater. Sci. Eng. A, 527 (2010) 745. https://doi.org/10.1016/j.msea.2009.08.048
  8. A. K. De, N. Cabanas and B. C. De Cooman : Z. Metallkd., 93 (2002) 3. https://doi.org/10.3139/146.020003
  9. T. Sawaguchi, L.-G. Bujoreanu, T. Kikuchi, K. Ogawa and F. Yin : ISIJ Int., 48 (2008) 99. https://doi.org/10.2355/isijinternational.48.99
  10. L. Sun, V. V. Cheverikin and I. S. Golovin : Mater. Lett., 256 (2019) 126635. https://doi.org/10.1016/j.matlet.2019.126635
  11. L. Chen, H.-S. Kim, S.-K. Kim and B. C. De Cooman : ISIJ Int., 47 (2007) 1804. https://doi.org/10.2355/isijinternational.47.1804
  12. S.-K. Oh, M. E. Kilic, J.-B. Seol, J.-S. Hong, A. Soon and Y.-K. Lee : Acta Mater., 188 (2020) 366. https://doi.org/10.1016/j.actamat.2020.02.020
  13. W.-S. Choi and B. C. De Cooman : Mater. Sci. Eng. A, 700 (2017) 641. https://doi.org/10.1016/j.msea.2017.06.020
  14. K. Sipos, L. Remy and A. Pineau : Metall. Trans. A, 7A (1976) 857.