• 제목/요약/키워드: Heat demand

검색결과 484건 처리시간 0.027초

공정열 및 수소생산을 위한 초고온가스로 열평형 분석 (Heat balance analysis for process heat and hydrogen generation in VHTR)

  • 박소영;허균영;유연재;이상일
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.85-92
    • /
    • 2016
  • 초고온가스로는 열출력 밀도가 낮아 노심용융의 가능성이 낮으며, 냉각재 상실사고 시 수소 발생 등으로 인한 폭발의 위험도 없다. 안전성 측면의 장점과 더불어 냉각재를 초고온으로 만들어 전력생산이외에 산업시설용 공정열로의 응용도 가능하다. 본 논문에서는 초고온가스로를 일차계통으로 하고, 전력 및 공정열 공급이 가능한 이차계통의 개념 설계를 담고 있다. 기존에 NGNP(Next Generation Nuclear Part)에서 제안한 350 MW 열출력 원자로 모델을 기반으로 수소생산 루프와는 별도로 전력생산을 위한 300 MW의 열에너지를 중간열교환기를 통해 이차계통으로 전달하는 참조모델을 개발하고, 이를 열역학적 측면에서 분석하였으며 이차계통 각 지점에서 주요 설계변수에 따른 효율분석과 최적화개념 연구를 수행하였다.

메탄올-글리세린계를 작동유체로 하는 흡수열펌프에서 흡수기 연구 (A Study on Absorber in Absorption Heat Pump with Methanol-Glycerine System as a Working Fluid)

  • 민병훈
    • 공업화학
    • /
    • 제17권1호
    • /
    • pp.111-117
    • /
    • 2006
  • 냉 난방 수요에서 일어나는 환경오염의 최소화와 화석연료 소비를 감소시키기 위해서 에너지보존을 개선시키는 것은 필수적이다. 이러한 점에서 흡수식 열펌프기술은 에너지 절약을 위해서 많은 가능성을 가지고 있다. 흡수식 열펌프는 에너지를 주입하지 않고 폐열의 이용을 높일 수 있는 방법이다. 흡수식 열펌프는 흡수기에서 흡수된 양의 증가가 매우 중요하기 때문에 흡수기 성능이 매우 중요하다. 본 연구에서는 흡수기의 성능을 개선시키기 위해서 메탄올과 글리세린을 작동유체로 하는 두 종류의 흡수기에 관한 연구를 수행하였다. 전자는 흡수기 내에 액상을 접선방향으로 공급하는 것이고 후자는 흡수기 내벽에 나선형 관을 설치하여 액상을 접선방향으로 공급하는 것이다. 실험 결과 후자가 흡수기에서 발생하는 열 및 물질전달이 향상되어 흡수성능이 증가되었음을 알 수 있었다.

대용량 알루미늄 브레이징 히트싱크 개발에 관한 연구 (A Study on Development of Large-capacity Aluminum Heat Sinks Brazed with a Batch Furnace)

  • 이영림;황순호;전의식
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1459-1464
    • /
    • 2009
  • 최근들어 고전력 및 고성능 전자제품 시장이 확대됨에 따라 대용량 알루미늄 히트싱크의 수요가 급증하고 있다. 이를 위해 고효율의 브레이징 히트싱크가 선호되고 있지만, 기존의 대기 연속로에서는 불충분한 가열과 모재금속의 서로 다른 두께 때문에 생산이 사실상 불가능하다. 따라서, 본 연구에서는 브레이징 히트싱크 개발을 위하여 새로운 인덱스 배치로 및 브레이징 공정을 최적화하였다. 또한, 개발된 브레이징 히트싱크에 대하여 용착효율 및 인장응력 실험도 수행하였다. 끝으로 브레이징 히트싱크와 실리콘 히트싱크의 열저항에 대한 실험을 통하여 수치해석 결과와 비교 검증하였다.

펄스형 Nd:YAG 레이저와 단락이행모드의 직류 GMA 열원을 이용한 하이브리드 용접 공정에 대한 연구 (A Study on the Process of Hybrid Welding Using Pulsed Nd:YAG Laser and Dip-transfer DC GMA Heat Sources)

  • 조원익;나석주
    • Journal of Welding and Joining
    • /
    • 제25권6호
    • /
    • pp.71-77
    • /
    • 2007
  • Until now, many researches on laser-arc hybrid welding processes have been conducted mainly for high power CW laser and high direct current arc to weld the thick steel plates for shipbuilding. Recently, however the usage of thin steel plates, which tend to be deformed easily by thermal energy, is been increasing because of demand of light structure such as car body in the automobile industry. Accordingly, heat sources having relatively low heat input such as pulsed laser, dip-transfer DC GMA and pulsed GMA seem to be applied more increasingly and the study about those heat sources is needed more intensively. Any heat source mentioned above can not stand alone without weld defects at a relatively high welding speed for increasing the welding productivity. This is main reason to apply the hybrid welding process which uses pulsed laser and low-heat-input GMA heat sources simultaneously to weld the thin steel plate. In this study, parameters of pulsed laser and dip-transfer DC GMA welding are studied firstly through preliminary experiments, and then analyzed in the viewpoint of their physical phenomena. Before conducting the hybrid welding, a pulse control technique is developed based on the parallel port communication and Visual C++ 6.0. Owing to development of this technique, interactions of laser and arc pulses can be controlled consistently. Using the pulse control technique, the hybrid welding is conducted and then its interactive welding phenomenon is analyzed.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

사회적 비용을 고려한 저탄소 전원구성의 시나리오 분석 (Scenario Analysis of Low-Carbon Generation Mix Considering Social Costs)

  • 박종배;조영탁;노재형
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.173-178
    • /
    • 2018
  • This study organizes scenarios on the power supply and demand plans considering the uncertainties and the portion of distributed energy resources. In analysing the scenarios, it estimates total electricity supply cost in the social aspect, natural gas demand and air pollutants emission including carbon dioxide. Also the analysis is performed to estimate the marginal cost of carbon dioxide reduction for the fuel switching from coal to liquified natural gas. In result, the social cost could be decreased by replacing some portion of renewable energy by LNG-based combined heat and power and delaying the construction of large base-load generators such as coal and nuclear plants. The marginal carbon dioxide reduction cost by fuel switching is in plausible range for fuel switching to be an option for carbon dioxide emission reduction when the social cost is considered.

학교건물의 신·재생에너지기반 복합시스템 간이평가 기법 연구 - 학급규모와 투자비 중심으로 - (A Study on Simplified Evaluation for Renewable Energy based Combination System in School - Considering the Size of Classroom and Capital Cost -)

  • 김지연
    • KIEAE Journal
    • /
    • 제13권2호
    • /
    • pp.77-84
    • /
    • 2013
  • Schools are one of favorable public buildings for Renewable Energy(RE) systems due to site conditions and their energy demand profiles(e.g. daytime-based use of hot water and heating/cooling). Although the government encourages schools to be equipped with RE systems, the adoption of RE systems in existing energy supply systems faces technical and financial barriers. For example, when installing a RE-based combination system(RECS) to meet the energy demand at various school scales, identifying cost effective combination of capacities of the RECS is not trivial since it usually requires technically intensive work including detailed simulation and demand/supply analysis with extensive data. This kind of simulation-based approaches is hardly implementable in practice. To address this, a simpler and applicable decision-supporting method is suggested in this study. This paper presents a simplified model in support of decision-making for optimal capacities of RECS within given budget scales and schools sizes. The proposed model was derived from detailed simulation results and statistical data. Using this model, the optimal capacities of RECS can be induced from the number of classes in a school.

에너지효율향상의무화제도의 국내 도입을 위한 기반구축 연구 - 에너지수요관리제도 및 절감률 산정 중심으로 - (A Study on Establishing Infrastructure Plans to Introduce an Energy Efficiency Resource Standards - Based on the Energy Demand Side Management and Energy Efficiency Potential -)

  • 홍성준;최봉하;이덕기;박수억;원종률
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.241-247
    • /
    • 2010
  • An Energy Efficiency Resource Standards (EERS) is a simple, market-based mechanism to encourage more efficient generation, transmission, and use of electricity, natural gas and heat. An EERS consists of electric, gas and/or heating energy savings targets for utilities, often with flexibility to achieve the target through a market-based trading system. In this paper, we make persons acquainted with EERS programs of foreign countries in these days. And we analyze domestic energy demand side management (DSM) programs in order to introduce an EERS program into the country successfully. Energy efficiency potential calculated in 2007 is one of the important factors for establishing an EERS program domestically. This study may provide basic data to set the amount of energy saving when an EERS program would be phased in.

가정용 PEMFC 운전 최적 설계 (Optimal Operational Planning of 1 kW Household PEMFC System)

  • 김기영;서석호;오시덕;곽호영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.113-116
    • /
    • 2007
  • The fuel cell which converts directly chemical energy of fuel into electric energy has higher efficiency than the conventional power generation which involves several additional processes. Especially, polymer electrolyte membrane fuel cell (PEMFC) of which the electrolyte is a thin proton conductive polymer membrane is affordable for portable power applications and small-scale distributed power generation including household and small building. It is very important to not only increase the efficiency of FC itself but determine the optimal operation mode. The optimal operational planning of lkW household PEMFC system based on the daily electricity and heat demand patterns was performed. The estimated economic gain was up to 20% by adoption of PEMFC system.

  • PDF

열병합발전이 고려된 심사곡선법에 의한 전원구성 비율 산정방법의 연구 (A Estimation Method for Ratio of Generator Composition included Combined Heat and Power Using Screening Curve Method)

  • 김용하;이범;최상규;김미예;연준희;김명렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.736-738
    • /
    • 2005
  • For calculating optimal generation composition of The Basic Plan of Long Term Electricity Supply & Demand, the Screening Curve Method that using generation cost for planning is needed. This paper will induce optimal power system ratio included Combined Head and Power and suggest the method for optimal generation composition of The Basic Plan of Long Term Electricity Supply & Demand that considered policy side.

  • PDF