DOI QR코드

DOI QR Code

Heat balance analysis for process heat and hydrogen generation in VHTR

공정열 및 수소생산을 위한 초고온가스로 열평형 분석

  • Park, Soyoung (Department of Nuclear Engineering, Kyung Hee University) ;
  • Heo, Gyunyoung (Department of Nuclear Engineering, Kyung Hee University) ;
  • Yoo, YeonJae (Department of Nuclear Team Power & Energy Plant Division, Hyundai Engineering Company) ;
  • Lee, SangIL (Department of Nuclear Team Power & Energy Plant Division, Hyundai Engineering Company)
  • 박소영 (경희대학교 원자력공학과) ;
  • 허균영 (경희대학교 원자력공학과) ;
  • 유연재 (현대엔지니어링 전력플랜트사업본부 원자력팀) ;
  • 이상일 (현대엔지니어링 전력플랜트사업본부 원자력팀)
  • Received : 2016.11.24
  • Accepted : 2016.12.16
  • Published : 2016.12.30

Abstract

Since the power density of the VHTR(Very High Temperature Reactor) is lower, there is less possibility of core melt. VHTR has no risk of explosion caused by hydrogen generation when the loss of coolant accident occurs, which is another advantage. Along with safety benefit, it can be used as a process heat supplier near demand facilities because coolant temperature is very high enough to be used for industrial purpose. In this paper, we designed the primary system using VHTR and the secondary system providing electricity and process heat. Based on that 350 MW thermal reactor proposed by NGNP(Next Generation Nuclear Part), we developed conceptual model that the IHX(Intermediate Heat Exchanger) loop transports 300 MW thermal energy to the secondary system. In addition, we analyzed thermodynamic behavior and performed the efficiency analysis and optimization study depending on major parameters.

초고온가스로는 열출력 밀도가 낮아 노심용융의 가능성이 낮으며, 냉각재 상실사고 시 수소 발생 등으로 인한 폭발의 위험도 없다. 안전성 측면의 장점과 더불어 냉각재를 초고온으로 만들어 전력생산이외에 산업시설용 공정열로의 응용도 가능하다. 본 논문에서는 초고온가스로를 일차계통으로 하고, 전력 및 공정열 공급이 가능한 이차계통의 개념 설계를 담고 있다. 기존에 NGNP(Next Generation Nuclear Part)에서 제안한 350 MW 열출력 원자로 모델을 기반으로 수소생산 루프와는 별도로 전력생산을 위한 300 MW의 열에너지를 중간열교환기를 통해 이차계통으로 전달하는 참조모델을 개발하고, 이를 열역학적 측면에서 분석하였으며 이차계통 각 지점에서 주요 설계변수에 따른 효율분석과 최적화개념 연구를 수행하였다.

Keywords

References

  1. Lee. S. I., 2015, Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR, Transaction of the KNS Spring Meeting
  2. J. Saurwein, 2007, NGNP Point Design and Commercial Plant Configurations, Proceedings of the NGNP Project Status Meeting
  3. J. Saurwein, 2010, Conceptual Design Report-Steam Cycle Modular Helium Reactor(SC-MHR) Demonstration Plant, General Atomics, pp. 113-118
  4. Lee. S. I., 2015, Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR - Part 2, Transaction of the KNS Autumn Meeting
  5. J. Saurwein, 2007, Preconceptual Engineering Services for the Next Generation Nuclear Plant(NGNP) with hydrogen Production: Executive Summary Report-NGNP and Hydrogen Production Preconceptual Design Studies Report, General Atomics, pp. 15-18
  6. Kim. S. J., Lee. J. S., Kim. M. S., 2015, Comparison and Characteristic Analysis of Supercritical CO2 Brayton Cycle and Steam Rankine Cycle for Waste Heat Recovery, The Society of Air-Conditioning And Refrigerating Engineers of Korea, pp.83-86
  7. Park. C. Y., Hong. W. K., Kim. J. M., 2011, Thermodynamic Efficiencies of Organic Rankine Cycle with a Feed Liquid Heater or Regenerator, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 23, No. 10, pp. 662-669 https://doi.org/10.6110/KJACR.2011.23.10.662
  8. F-Chart Software, 2016, Engineering Equation Solver, http://www.fchart.com/ees/
  9. Shin. Y. J., 2014, Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI SI Hydrogen Production Facilities, Transaction of the KNS Spring Meeting
  10. Curtiss-Wright Nuclear Division, 2016, PEPSE, http://famos.scientech.us/PEPSE.html
  11. Shin. Y. J., 2013, A Cooling System for The Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities, International Journal of Hydrogen Energy, Vol. 38, No.14, pp. 6182-6189 https://doi.org/10.1016/j.ijhydene.2012.12.121