• Title/Summary/Keyword: Health Platform

Search Result 492, Processing Time 0.023 seconds

Evaluation of VOCs in Subway (지하철역사에서의 휘발성 유기화합물 농도 평가)

  • 최우건;배상호;박덕신;정우성;김태오
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.572-576
    • /
    • 2002
  • Volatile Organic Compounds(VOCs) contribute to the formation of ozone and PAN which are injurious to health through complex photochemical reactions. Growing consumption of fossil fuels results in significant emission of VOCs and other air pollutants into the atmosphere. In this study, Ambient an grab samples of VOCs were collected at the platform and the concourse of six stations in the subway from February 21th to 28th. Among the total contents, Toluene (118.74 ppm) showed the highest concentration in the Indukwon station platform while other contents were measured low concentrations. Also, the platform concentrations were higher than the concourse concentrations through the whole contents.

  • PDF

Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Ho, Duc-Duy
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.393-416
    • /
    • 2011
  • Hybrid acceleration-impedance sensor nodes on Imote2-platform are designed for damage monitoring in steel girder connections. Thus, the feasibility of the sensor nodes is examined about its performance for vibration-based global monitoring and impedance-based local monitoring in the structural systems. To achieve the objective, the following approaches are implemented. First, a damage monitoring scheme is described in parallel with global vibration-based methods and local impedance-based methods. Second, multi-scale sensor nodes that enable combined acceleration-impedance monitoring are described on the design of hardware components and embedded software to operate. Third, the performances of the multi-scale sensor nodes are experimentally evaluated from damage monitoring in a lab-scaled steel girder with bolted connection joints.

Safety Autonomous Platform Design with Ensemble AI Models (앙상블 인공지능 모델을 활용한 안전 관리 자율운영 플랫폼 설계)

  • Dongyeop Lee;Daesik Lim;Soojeong Woo;Youngho Moon;Minjeong Kim;Joonwon Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.159-162
    • /
    • 2024
  • This paper proposes a novel safety autonomous platform (SAP) architecture that can automatically and precisely manage on-site safety through ensemble artificial intelligence models generated from video information, worker's biometric information, and the safety rule to estimate the risk index. We practically designed the proposed SAP architecture by the Hadoop ecosystem with Kafka/NiFi, Spark/Hive, Hue, ELK (Elasticsearch, Logstash, Kibana), Ansible, etc., and confirmed that it worked well with safety mobility gateways for providing various safety applications.

Detection of Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Using the Quantamatrix Multiplexed Assay Platform System

  • Wang, Hye-young;Uh, Young;Kim, Seoyong;Cho, Eunjin;Lee, Jong Seok;Lee, Hyeyoung
    • Annals of Laboratory Medicine
    • /
    • v.38 no.6
    • /
    • pp.569-577
    • /
    • 2018
  • Background: The increasing prevalence of drug-resistant tuberculosis (TB) infection represents a global public health emergency. We evaluated the usefulness of a newly developed multiplexed, bead-based bioassay (Quantamatrix Multiplexed Assay Platform [QMAP], QuantaMatrix, Seoul, Korea) to rapidly identify the Mycobacterium tuberculosis complex (MTBC) and detect rifampicin (RIF) and isoniazid (INH) resistance-associated mutations. Methods: A total of 200 clinical isolates from respiratory samples were used. Phenotypic anti-TB drug susceptibility testing (DST) results were compared with those of the QMAP system, reverse blot hybridization (REBA) MTB-MDR assay, and gene sequencing analysis. Results: Compared with the phenotypic DST results, the sensitivity and specificity of the QMAP system were 96.4% (106/110; 95% confidence interval [CI] 0.9072-0.9888) and 80.0% (72/90; 95% CI 0.7052-0.8705), respectively, for RIF resistance and 75.0% (108/144; 95% CI 0.6731-0.8139) and 96.4% (54/56; 95% CI 0.8718-0.9972), respectively, for INH resistance. The agreement rates between the QMAP system and REBA MTB-MDR assay for RIF and INH resistance detection were 97.6% (121/124; 95% CI 0.9282-0.9949) and 99.1% (109/110; 95% CI 0.9453-1.0000), respectively. Comparison between the QMAP system and gene sequencing analysis showed an overall agreement of 100% for RIF resistance (110/110; 95% CI 0.9711-1.0000) and INH resistance (124/124; 95% CI 0.9743-1.0000). Conclusions: The QMAP system may serve as a useful screening method for identifying and accurately discriminating MTBC from non-tuberculous mycobacteria, as well as determining RIF- and INH-resistant MTB strains.

Development of Cold Chain Delivery Service for Pet Healthcare Service using IoT Technology and Service Design (IoT 기술과 서비스디자인을 활용한 반려동물 헬스케어 서비스를 위한 검체 운반 콜드체인 배송 서비스 개발 )

  • Haewoong Shin;Jangsoo Kim
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.60-71
    • /
    • 2023
  • The pet industry is also developing and growing in various ways as the number of companions is steadily increasing around the world and social awareness of pets has changed to members of the "family." The pet tech market, which can check health changes early by utilizing IOT technology, is also drawing attention as pets often cannot be expressed even if they have health problems. Based on this problem recognition, this study aims to promote the cold chain service market by developing important animal sample transport services in the pet healthcare market and to develop solutions that satisfy all stakeholders such as pets, pets, and animal hospitals. It was developed to apply sustainability related to society and culture as well as economic and environmental values in the research process.

  • PDF

Building a Big Data Platform Using Real-time Wearable Devices and Cases of Safety Accidents in KOREA

  • LEE, Ki Seok;CHOI, Youngjin;LEE, Kyung-cheun;SHIN, Yoonseok;YOO, Wi Sung
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.375-381
    • /
    • 2022
  • Safety accidents are of concern during construction projects, even given the recent innovations in digital technologies. These projects remain focused on overcoming specific and limited applications on construction sites. For this reason, the development of an inclusive safety management system has become crucial. This study aims to build a Big Data platform to inform decisions on how to proactively eliminate worker hazards on construction sites. The platform consists of about 100,000 real records and a real-time monitored database featuring various safety indices, such as workers' altitudes, heart rates, and fatigability during construction, which are determined through various wearable devices. The data types are customized and integrated by a research team in accordance with the characteristics of a specific project using hypertext transfer protocol (HTTP). The results can be helpful as efficient tools to ensure successful safety management in complex construction situations. This study is expected to provide three significant contributions to the field, including real-time fatigability analysis and tracking of workers on-site; providing early GPS-based warnings to workers who might be accessing dangerous spaces or places; and monitoring the workers' health indices, based on details from 100,000 cases.

  • PDF

Fluctuating wind and wave simulations and its application in structural analysis of a semi-submersible offshore platform

  • Ma, Jin;Zhou, Dai;Han, Zhaolong;Zhang, Kai;Bao, Yan;Dong, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.624-637
    • /
    • 2019
  • A semi-submersible offshore platform always operates under complex weather conditions, especially wind and waves. It is vital to analyze the structural dynamic responses of the platform in short-term sea states under the combined wind and wave loads, which touches upon three following work. Firstly, a derived relationship between wind and waves reveals a correlation of wind velocity and significant wave height. Then, an Improved Mixture Simulation (IMS) method is proposed to simulate the time series of wind/waves accurately and efficiently. Thus, a wind-wave scatter diagram is expanded from the traditional wave scatter diagram. Finally, the time series of wind/wave pressures on the platform in the short-term sea states are converted by Workbench-AQWA. The numerical results demonstrate that the proposed numerical methods are validated to be applicable for wind and wave simulations in structural analyses. The structural dynamic responses of the platform members increase with the wind and wave strength. In the up-wind and wave state, the stresses on the deck, the connections between deck and columns, and the connection between columns and pontoons are relatively larger under the vertical bending moment. These numerical methods and results are wished to provide some references for structural design and health monitoring of several offshore platforms.

A Review of Open Modeling Platform Towards Integrated Water Environmental Management (통합 물환경 관리를 위한 개방형 모델링 플랫폼 고찰)

  • Lee, Sunghack;Shin, Changmin;Lee, Yongseok;Cho, Jaepil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.636-650
    • /
    • 2020
  • A modeling system that can consider the overall water environment and be used to integrate hydrology, water quality, and aquatic ecosystem on a watershed scale is essential to support decision-making in integrated water resources management (IWRM). In adapting imported models for evaluating the unique water environment in Korea, a platform perspective is becoming increasingly important. In this study, a modeling platform is defined as an ecosystem that continuously grows and provides sustainable values through voluntary participation- and interaction-of all stakeholders- not only experts related to model development, but also model users and decision-makers. We assessed the conceptual values provided by the IWRM modeling platform in terms of openness, transparency, scalability, and sustainability. I We also reviewed the technical aspects of functional and spatial integrations in terms of socio-economic factors and user-centered multi-scale climate-forecast information. Based on those conceptual and technical aspects, we evaluated potential modeling platforms such as Source, FREEWAT, Object Modeling System (OMS), OpenMI, Community Surface-Dynamics Modeling System (CSDMS), and HydroShare. Among them, CSDMS most closely approached the values suggested in model development and offered a basic standard for easy integration of existing models using different program languages. HydroShare showed potential for sharing modeling results with the transparency expected by model user-s. Therefore, we believe that can be used as a reference in development of a modeling platform appropriate for managing the unique integrated water environment in Korea.

A Study on the Security Threat Response in Smart Integrated Platforms (스마트 통합플랫폼 보안위협과 대응방안 연구)

  • Seung Jae Yoo
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.129-134
    • /
    • 2022
  • A smart platform is defined as an evolved platform that realizes physical and virtual space into a hyper-connected environment by combining the existing platform and advanced IT technology. The hyper-connection that is the connection between information and information, infrastructure and infrastructure, infrastructure and information, or space and service, enables the realization and provision of high-quality services that significantly change the quality of life and environment of users. In addition, it is providing everyone with the effect of significantly improving the social safety net and personal health management level by implementing smart government and smart healthcare. A lot of information produced and consumed in these processes can act as a factor threatening the basic rights of the public and individuals by the informations themselves or through big data analysis. In particular, as the smart platform as a core function that forms the ecosystem of a smart city is naturally and continuously expanded, it faces a huge security burden in data processing and network operation. In this paper, platform components as core functions of smart city and appropriate security threats and countermeasures are studied.

Assessment of Airborne Bacteria and Particulate Matters Distributed in Seoul Metropolitan Subway Stations (서울시 일부 지하철역 내 분포하는 부유 세균 및 입자상 오염물질 평가)

  • Kim, Ki-Youn;Park, Jae-Beom;Kim, Chi-Nyon;Lee, Kyung-Jong
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.254-261
    • /
    • 2006
  • In activity areas of subway workers and passengers in Seoul metropolitan subway lines 1-4, mein concentrations of airborne bacteria were relatively higher in workers' bedroom and station precinct whereas concentrations of particulate matters, $PM_{10}$ and $PM_{2.5}$, were relatively higher in platform, inside train and driver's seat as compared with other activity areas. This result indicates that little correlation between airborne bacteria and particulate matters was found, which assumed that most airborne particulate matters distributed in subway consisted of mainly inorganic dust like a metal particles. Mean concentrations of $PM_{10}$ and $PM_{2.5}$ in station precinct and platform exceeded the threshold limit value ($PM_{10}:150{\mu}g/m^3,\;PM_{2.5}:65{\mu}g/m^3$) but those in station office and ticket office were below it. The genera identified in all the activity areas of subway over 5% detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium, of which Staphylococcus and Micrococcus covered over 50% of total airborne bacteria and were considered as predominant genera distributed in subway.