DOI QR코드

DOI QR Code

A Review of Open Modeling Platform Towards Integrated Water Environmental Management

통합 물환경 관리를 위한 개방형 모델링 플랫폼 고찰

  • Lee, Sunghack (Convergence Laboratory for Watershed Management, Integrated Watershed Management Institute) ;
  • Shin, Changmin (Water Quality Assessment Research Division, National Institute of Environment Research) ;
  • Lee, Yongseok (Department of Health and Environment, Hallym Polytechnic University) ;
  • Cho, Jaepil (Convergence Laboratory for Watershed Management, Integrated Watershed Management Institute)
  • 이성학 (유역통합관리연구원) ;
  • 신창민 (국립환경과학원 물환경연구부 물환경평가연구과) ;
  • 이용석 (한림성심대학교 보건환경과) ;
  • 조재필 (유역통합관리연구원)
  • Received : 2020.09.18
  • Accepted : 2020.11.16
  • Published : 2020.11.30

Abstract

A modeling system that can consider the overall water environment and be used to integrate hydrology, water quality, and aquatic ecosystem on a watershed scale is essential to support decision-making in integrated water resources management (IWRM). In adapting imported models for evaluating the unique water environment in Korea, a platform perspective is becoming increasingly important. In this study, a modeling platform is defined as an ecosystem that continuously grows and provides sustainable values through voluntary participation- and interaction-of all stakeholders- not only experts related to model development, but also model users and decision-makers. We assessed the conceptual values provided by the IWRM modeling platform in terms of openness, transparency, scalability, and sustainability. I We also reviewed the technical aspects of functional and spatial integrations in terms of socio-economic factors and user-centered multi-scale climate-forecast information. Based on those conceptual and technical aspects, we evaluated potential modeling platforms such as Source, FREEWAT, Object Modeling System (OMS), OpenMI, Community Surface-Dynamics Modeling System (CSDMS), and HydroShare. Among them, CSDMS most closely approached the values suggested in model development and offered a basic standard for easy integration of existing models using different program languages. HydroShare showed potential for sharing modeling results with the transparency expected by model user-s. Therefore, we believe that can be used as a reference in development of a modeling platform appropriate for managing the unique integrated water environment in Korea.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립농업과학원 연구개발사업(과제번호: PJ014932)의 지원으로 수행되었습니다.

References

  1. Ahuja, L. R., Ascough, J. C., and David, O. (2005). Developing developing eveloping natural resource models using the object modeling system: Feasibility and challenges, Advances in Geosciences, 4, 29-36. https://doi.org/10.5194/adgeo-4-29-2005
  2. Argent R. M., Grayson R. B., and Ewing S. A. (1999). Integrated models for environmental management: Issues of process and design, Environvironment International, 25, 693-699.
  3. Badham, J., Elsawah, S., Guillaume, J. H. A., Hamilton, S. H., Hunt, R. J., Jakeman, A. J., Pierce, S. A., Snow, V. O., Babbar-Sebens, M., Fu, B., Gober, P., Hill, M. C., Iwanaga, T., Loucks, D. P., Merritt, W. S., Peckham, S. D., Richmond, A. K., Zare, F., Ames, D., and Bammer, G. (2019). Effective modeling for integrated water resource management: A guide to contextual practices by phases and steps and future opportunities, Environmental Modelling & Software, 116, 40-56. https://doi.org/10.1016/j.envsoft.2019.02.013
  4. Buahin, C. A., and Horsburgh, J. S. (2018). Advancing the Open Modeling Interface (OpenMI) for integrated water resources modeling, Environmental Modelling & Software, 108, 133-153. https://doi.org/10.1016/j.envsoft.2018.07.015
  5. Chang, S. and Chung, I. M. (2014). Analysis of groundwater variations using the relationship between groundwater use and daily minimum temperature in a water curtain cultivation site, The Journal of Engineering Geology, 24(2), 217-225. https://doi.org/10.9720/kseg.2014.2.217
  6. Chang, T. S., Kim, J. C., Choi, W. G., and Kim, K. O. (2009). Study on the development of open interfaced geospatial information service platform, Journal of Korea Spatial Information System Society, 11(1), 17-24. [Korean Literature]
  7. Cannata, M. and Neumann, J. (2017). The Observation Analysis Tool: A free and open source tool for time series analysis for groundwater modelling, Geoingegneria Ambientale e Mineraria, Anno LIV, n. 2, 51-56.
  8. Chawanda, C. J., George, C., Thiery, W., Griensven, A. V., Tech, J., Arnold, J., and Srinivasan, R. (2020). User-friendly workflows for catchment modelling: Towards reproducible SWAT+ model studies, Environmental Modelling and Software, 134, 104812. https://doi.org/10.1016/j.envsoft.2020.104812
  9. Cho, J., Jung, I., Cho, W., Lee, E., Kang, D., and Lee, J. (2018). Suggestion of user-centered climate service framework and development of user interface platform for climate change adaptation, Journal of Climate Change Research, 9(1), 1-12. [Korean Literature] https://doi.org/10.15531/ksccr.2018.9.1.01
  10. Cho, J., Mostaghimi, S., and Kang, M. S. (2010). Development and application of a modeling approach for surface water and groundwater interaction, Agricultural Water Management, 97(1), 123-130. https://doi.org/10.1016/j.agwat.2009.08.018
  11. Choi, J. Y. (2018). Policy direction for conservation of aquatic ecology and water environment in unifying water management, Journal of Water Policy and Economy, 31, 13-27. [Korean Literature]
  12. Chun, S., Yoon, S., and Jeong, S. (2020). A study on the business model design and economic evaluation of open source software license compliance platform, Journal of the Korea Society for Simulation, 29(2), 1-10. https://doi.org/10.9709/JKSS.2020.29.2.001 [Korean Literature]
  13. Community surface dynamic modeling system (CSDMS). (2020). Community surface dynamic modeling system (CSDMS), https://csdms.colorado.edu/wiki/Main_Page (accessed sep. 2020)
  14. Criollo, R., Velasco, V., Nardi, A., Manuel de Vries, L., Riera, C., Scheiber, L., Jurado, A., Brouyere, S., Pujades, E., Rossetto, R., and Vazquez-Sune, E. (2019). AkvaGIS: An open source tool for water quantity and quality management, Computers & Geosciences, 127, 123-132. https://doi.org/10.1016/j.cageo.2018.10.012
  15. David, O., Ascough, J. C., Lloyd, W., Green, T. R., Rojas, K. W., Leavesley, G. H., and Ahuja, L. R. (2013). A software engineering perspective on environmental modeling framework design: The object modeling system, Environmental Modelling & Software, 39, 201-213. https://doi.org/10.1016/j.envsoft.2012.03.006
  16. David, Olaf, Carlson, J. R., Leavesley, G. H., Ii, J. C. A., Geter, F. W., Rojas, K. W., and Ahuja, L. R. (2010). Object modeling system v3.0, Developer and user handbook.
  17. Filippis, G., Borsi, I., Foglia, L., Cannata, M., Velasco Mansilla, V., Vasquez-Sune, E., Matteo Ghetta, M., and Rossetto, R. (2017). Software tools for sustainable water resources management: The GIS-integrated FREEWAT platform, Rendiconti Online Della Societa Geologica Italiana, 42, 59-61. https://doi.org/10.3301/ROL.2017.14
  18. Deursen van, A. (1997). Domain-specific languages versus object-oriented frameworks: A financial engineering case study, Smalltalk and Java in Industry and Academia, STJA'97, Ilmenau Technical University, 35-39.
  19. Deursen van, A., Klint, P., and Visser, J. (2000). Domain-specific languages: an annotated bibliography, ACM SIGPLAN Notices, 35(6), 26-36. https://doi.org/10.1145/352029.352035
  20. Elinor, O. (2011). Reflections on some unsettled problems of irrigation, American Economic Review, 101(1), 49-63. https://doi.org/10.1257/aer.101.1.49
  21. eWater. (2019). National hydrologically modelling strategy-development and adoption 2012-2018, Summary report, eWater.
  22. eWater. (2020). eWater system, https://ewater.org.au/products/ewater-source/. (acccessed Sep. 2020)
  23. Gan, T., Tarboton, D. G., Dash, P., Gichamo, T. Z., and Horsburgh, J. S. (2020). Integrating hydrologic modeling web services with online data sharing to prepare, store, and execute hydrologic models, Environmental Modelling & Software, 130, 104731. https://doi.org/10.1016/j.envsoft.2020.104731
  24. Gijsbers, P., Gregersen, J., Westen, S., Dirksen, F., Gavardinas, C., and Blind, M. (2005). Open-MI document series: Part B-Guidlines for the OpenMI, IT Frameworks (HarmonIT).
  25. Gregersen, J. B., Gijsbers, P. J. A., and Westen, S. J. P. (2007). OpenMI: Open modelling interface, Journal of Hydroinformatics, 9(3), 175-191. https://doi.org/10.2166/hydro.2007.023
  26. Harpham, Q. K., Hughes, A., and Moore, R. V. (2019). Introductory overview: The OpenMI 2.0 standard for integrating numerical models, Environmental Modelling & Software, 122, 104549. https://doi.org/10.1016/j.envsoft.2019.104549
  27. Horsburgh, J. S., Morsy, M. M., Castronova, A. M., Goodall, J. L., Gan, T., Yi, H., Stealey, M. J., and Tarboton, D. G. (2016). HydroShare: Sharing diverse environmental data types and models as social objects with application to the hydrology domain, Journal of the American Water Resources Association, 52(4), 873-889. https://doi.org/10.1111/1752-1688.12363
  28. Hutton, E. W. H., piper, M. D., and Tucker, G. E. (2020). The basic model interface 2.0: A standard interface for coupling numerical models in the geosciences, Journal of Open Source Software, 5(51), 2317. https://doi.org/10.21105/joss.02317
  29. Hutton, E. W. H., Piper, M. D., Peckham, S. D., Overeem, I., Kettner, A. J., and Syvitski, J. P. M. (2014). Building Sustainable Software-The CSDMS Approach, ArXiv:1407.4106 [Cs]. http://arxiv.org/abs/1407.4106
  30. HydroShare. (2020). HydroShare system, https://www.hydroshare.org/, (accessed Sep. 2020)
  31. Jung, C. G., Park, J. Y., Lee, J. W., Jung, H., and Kim, S. J. (2011). The applicability of SWAT-APEX model for agricultural nonpoint source pollution assessment, Journal of The Korean Society of Agricultural Engineers, 53(5), 35-42. https://doi.org/10.5389/KSAE.2011.53.5.035 [Korean Literature]
  32. Kang, H. S., Jang, J. H., Ahn, J. H., and Kim, I. J. (2011). Numerical estimations of nakdong river flows through linking of watershed and river flow models, Journal of Korea Water Resources Association, 44(7), 577-590. https://doi.org/10.3741/JKWRA.2011.44.7.577 [Korean Literature]
  33. Kim, J. T., Chung, I. M., Kim, N. W., and Jeong, G. C. (2011). Feasibility study of a groundwater dam in osibcheon, using SWAT-MODFLOW, The Journal of Engineering Geology, 21(2), 179-186. https://doi.org/10.9720/kseg.2011.21.2.179
  34. Kim, N. W., Chung, I. M., Yoo, S. Y., Lee, J. W., and Yang, S. K. (2009). Integrated surface-groundwater analysis in jeju island, Journal of Environmental Science International, 18(9), 1017-1026. https://doi.org/10.5322/JES.2009.18.9.1017
  35. Kim, Y. J. and Jeong, E. S. (2015). Socio-hydrology or hydro-sociology: Research on mutual evolution between humans and the water cycle, Water for future, 48(7), 34-43.
  36. Koltsida, E. and Kallioras, A. (2019). Groundwater flow simulation through the application of the FREEWAT modeling platform, Journal of Hydroinformatics, 40, 812-833. https://doi.org/10.2166/hydro.2019.040
  37. Lagoze, C., H., Sompel, V, D., Johnston, P., Nelson, M., Sanderson, R., and Warner, S. (2008). Open archives initiative object reuse and exchange: ORE specification - abstract data model, http://www.openarchives.org/ore/1.0/datamodel.html (accessed November 2020).
  38. Leavesley, G. H., Lichty, R. W., Troutman, B. M., and Saindon, L. G. (1983). Precipitation runoff modeling system: users manual, Water Resources Investigations USGS, Denver, Colorado.
  39. Leavesley, G. H., Markstrom, S. L., and Viger, R. J. (2006). USGS modular modeling system (MMS) e Precipitation-runoff modeling system (PRMS), Singh, V. P. and Frevert, D. K. (Eds.), Watershed Models. CRC Press, Boca Raton, FL, 159-177.
  40. Lin, Y. H., Ko, T. M., Chuang, T. R., and Lin, K. J. (2006). Open source licenses and the creative commons framework: License selection and comparison, Journal of information science and engineering, 22(1), 1-17.
  41. Lloyd, W., David, O., Ascough, J. C., Rojas, K. W., Carlson, J. R., Leavesley, G. H., Krause, P., Green, T. R., and Ahuja, L. R. (2011). Environmental modeling framework invasiveness: Analysis and implications, Environmental Modelling & Software, 26(10), 1240-1250. https://doi.org/10.1016/j.envsoft.2011.03.011
  42. Marston, F., Argent, R., Vertessy, R., Cuddy, S., and Rahman, J. (2002). The status of catchment modelling in australia. crc for catchment hydrology, Clayton, 39.
  43. Meyer, B. (2001). NET is coming [microsoft web services platform], Computer, 34(8), 92-97. DOI 10.1109/2.940017.
  44. Moore, R. V. and Tindall, C. I. (2005). An overview of the open modelling interface and environment (the OpenMI), Environmental Science & Policy, 8(3), 279-286. https://doi.org/10.1016/j.envsci.2005.03.009
  45. Morsy, M. M., Goodall, J. L., Castronova, A. M., Dash, P., Merwade, V., Sadler, J. M., Rajib, M. A., Horsburgh, J. S., and Tarboton, D. G. (2017). Design of a metadata framework for environmental models with an example hydrologic application in HydroShare, Environmental Modelling & Software, 93, 13-28. https://doi.org/10.1016/j.envsoft.2017.02.028
  46. Na, E. H., Shin, C. M., Park, L. J., Kim, D. G., and Kim, K. (2014). A Study on the operational forecasting of the nakdong river flow with a combined watershed and waterbody model, Journal of Korean Society on Water Environment, 30(1), 16-24. https://doi.org/10.15681/KSWE.2014.30.1.016 [Korean Literature]
  47. OGC. (2014). OGCⓇ Open modelling interface interface standard, Open Geospatial Consrotium, 122. http://www.opengis.net/doc/IS/openmi/2.0
  48. OMS. (2020). Object modeling System, https://alm.engr.colostate.edu/cb/wiki/16961 (accessed Sep. 2020)
  49. Organization for Economic Cooperation and Development (OECD). (2016). Recommendation of the Council on Water, OECD.
  50. Overeem, I., Berlin, M. M., and Syvitski, J. P. M. (2013). Strategies for integrated modeling: The community surface dynamics modeling system example, Environmental Modelling & Software, 39, 314-321. https://doi.org/10.1016/j.envsoft.2012.01.012
  51. Peckham, S. D., Hutton, E. W. H., and Norris, B. (2013). A component-based approach to integrated modeling in the geosciences: The design of CSDMS, Computers & Geosciences, 53, 3-12. https://doi.org/10.1016/j.cageo.2012.04.002
  52. Rahman, J.M., Perraud, J. M., Seaton S. P., Hotham, H., Murray, N., Leighton, B., Freebairn A., Davis, G., and Bridgart, R. (2005). Evolution of TIME, MODSIM 2005 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, 4(5), 697-703.
  53. Rossetto, R., De Filippis, G., Borsi, I., Foglia, L., Cannata, M., Criollo, R., and Vasquez-Sune, E. (2017). Spatial analysis and simulation tools for groundwater management: The FREEWAT platform. Acque Sotterranee, Italian Journal of Groundwater, 6(3). https://doi.org/10.7343/as-2017-293
  54. Rossetto, R., De Filippis, G., Borsi, I., Foglia, L., Cannata, M., Criollo, R., and Vazquez-Sune, E. (2018). Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management, Environmental Modelling & Software, 107, 210-230. https://doi.org/10.1016/j.envsoft.2018.06.007
  55. Rossetto, R., De Filippis, G., Triana, F., Ghetta, M., Borsi, I., and Schmid, W. (2019). Software tools for management of conjunctive use of surface- and ground-water in the rural environment: Integration of the farm process and the crop growth module in the FREEWAT platform, Agricultural Water Management, 223, 105717. https://doi.org/10.1016/j.agwat.2019.105717
  56. Searle, R. and Penton, D. (2012). Review of The Invisible Modelling Environment (TIME), CSIRO.
  57. Song, D. H., Ryu, J. W., and Jung, E. H. (2015). A study on application of open platform of spatial information for improvement of environment impact assessment supporting system, Journal of the Korean Association of Geographic Information Studies, 18(1), 105-119. https://doi.org/10.11108/kagis.2015.18.1.105 [Korean Literature]
  58. Syvitski, J., Hutton E. W. H., Mark, D., Piper, M. D., Overeem, I., Kettner, A. J., and Peckham, S. D. (2014). Plug and play component modeling - the CSDMS2.0 approach, Proceedings of the 7th Intl. Congress on Env. Modelling and Software, International Environmental Modelling and Software Society (iEMSs). San Diego, CA.
  59. Tarboton, D. G., Idaszak, R., Horsburgh, J. S., Heard, J., Ames, D., Goodall, J. L., Band, L., Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., and Maidment, D. (2014). HydroShare: Advancing collaboration through hydrologic data and model sharing, International Congress on Environmental Modelling and Software, 7, https://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/7
  60. United States Environmental Protection Agency (U. S. EPA). (2019). BASINS 4.5 (better assessment science integrating point and non-point sources) modeling framework, National Exposure Research Laboratory, RTP, North Carolina.
  61. Weon, D. (2018). Service platform design for smart environment disaster management, The Journal of the Convergence on Culture Technology, 4(3), 247-252. https://doi.org/10.17703/JCCT.2018.4.3.247
  62. Yeon, S. H., Lee, I. S., and Tcha, T. K. (2014). Interface server model for the effective data link between public data portal and open platform, Journal of cadastre, 44(1), 113-125. [Korean Literature]
  63. Yoo, H. Y., Lee, K. W., Lee, K. J., and Kim, Y. S. (2013). Questionnaire analysis of geo-spatial open source application, Journal of the Korean Association of Geographic Information Studies, 16(4), 106-119. https://doi.org/10.11108/kagis.2013.16.4.106 [Korean Literature]
  64. Zolkifli, N. N., Ngah, A., and Deraman, A. (2018). Version control system: A review, Procedia Computer Science, 135, 408-415. https://doi.org/10.1016/j.procs.2018.08.191