• Title/Summary/Keyword: Haryeong

Search Result 17, Processing Time 0.029 seconds

Evaluation of Quality Characteristics and Definition of Utilization Category in Korean Potato (Solanum tuberosum L.) Cultivars (국내산 감자(Solanum tuberosum L.)의 품종별 품질특성 평가 및 용도구분)

  • Lee, Yeh-Jin;Jeong, Jin-Cheol;Yoon, Young-Ho;Hong, Su-Young;Kim, Su-Jeong;Jin, Yong-Ik;Nam, Jeong-Hwan;Kwon, Oh-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.271-279
    • /
    • 2012
  • Total twenty cultivars of potato (Solanum tuberosum L.) were grown at Gangneung where is located in low land of Korea. Their tubers were harvested from 100 to 120 days after planting, and over 150 g of tubers were selected for quality evaluation. Dry matter, starch, amylose in starch, ascorbic acid, protein, individual sugars and mineral were analyzed and mealiness of cooked potatoes were also evaluated by panel test. Dry mater content was the highest in 'Haryeong', 'Jayoung' and 'Shepody', and the biggest starch granules were observed in 'Jayoung' and 'Sinnamjak'. In addition, the content of amylose was highest in 'Haryeong', 'Chudong' and 'Goun'. Mineral content showed the slight difference between cultivars, but it's tendency was not clear. Vitamin C content was highest in 'Jayoung' as 62.5 $mg{\cdot}100g^{-1}$ FW, and 'Chugang' exhibited the highest content of protein. Sugar content was lower in cultivars for single one than double cropping. The lowest sugar content was observed in 'Atlantic' and 'Namseo' among cultivars for single cropping, and in 'Goun' for double cropping. As a result of analysis for quality factors, we could select nine cultivars ('Atlantic', 'Gahwang', 'Gawon', 'Goun', 'Hareong', 'Irish Cobbler', 'Jasim', 'Jayoung' and 'Shepody') with high dry matter content and low reducing sugar as a cultivar group for processing. Additionally, seven cultivars ('Chugang', 'Gawon', 'Goun', 'Hareong', 'Irish Cobbler', 'Jasim' and 'Seohong') with high mealiness and amylose content and five cultivars ('Atlantic', 'Chudong', 'Gahwang', 'Jopung' and 'Jowon') with low mealiness and amylose content were classified as groups for boiled or steam cooking and for soup or pot dishes, respectively.

Quality and Yield Characteristics of Potato (Solanum tuberosum L.) Grown at Paddy Field in Spring Season

  • Im, Ju Sung;Cho, Ji Hong;Chang, Dong Chil;Jin, Yong Ik;Park, Young Eun;Chun, Chung Gi;Kim, Dong Un;Yu, Hong Seob;Lee, Jong Nam;Kim, Myung Jun
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2013
  • This study was conducted to determine the characteristics of quality and yield in potatoes grown at paddy field before rice transplantation during the spring season. Three potato cultivars ('Jowon', 'Haryeong', and 'Goun') were grown in Gangneung (asl 5 m) and Seocheon (asl 20 m). In both locations, weather condition belonged to the fourth zone (spring cropping) in potato production location's distribution of Korea. Daily mean soil temperature in both the locations was $0.2-0.6^{\circ}C$ lower than air temperature, while soil moisture was adequate level to potato growth in spite of spring drought. TR ratio was not affected by location, but by cultivar. Specific gravity, starch content, dry matter rate, and yield were significantly influenced by location and by cultivar. There was no difference in total tuber number by location, however there was a large gap in marketable tuber yield according to locations and cultivars. There were high negative relationships between yield and main qualities such as dry matter rate and starch content, while high positive correlation was observed between main qualities. It was possible to produce potato before rice transplanting at drained paddy fields located in representative two locations of potato spring cropping and their characteristics in growth and quality were similar to those generally well known in upland cultivation. Paddy field was thought to be more favorable than upland in terms of available soil moisture supply against spring drought. Further research, however, was needed to increase soil temperature and also preliminary review on proper cultivar according to location seemed to be needed for high yield.

Study on the Hydrophobicity and Mechanical Properties of Silica-Based Aerogel by Introducing Organic Benzene (벤젠 유기물 도입에 따른 실리카 기반 에어로겔의 소수성 및 기계적 특성 연구)

  • Qi, Wang;Lee, Jihun;Dhavale, Rushikesh P.;Choi, Haryeong;Kim, Taehee;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.135-141
    • /
    • 2020
  • The silica aerogels with benzene-bridged were designed to have uniform network structure, ordered pore structure, improved mechanical properties and excellent textural properties. Adding organic to enhance the mechanical properties of silica aerogels is a common method, but textural properties of aerogels with organic are reduced due to the organic-inorganic phase separation. In this paper, we use a simple and low-cost method to increase mechanical properties while maintaining textural properties of SiO2 aerogels. Two types of benzene-bridged precursors were prepared to study the effect of the number of hydroxyl band on the textural and mechanical properties. The porous silica aerogel was prepared by a simple, cost effective and pollution-free sol-gel method. This method does not require additional silylating reagents. The benzene-bridged silica aerogel samples prepared had excellent textural properties, high specific surface area (1,326 ㎡/g), porous structure and hydrophobicity (>140°). The mechanical strength of 2T4 is more than 5 times that of pure silica aerogel.

Synthesis of Polyimide Crosslinked Silica-based Aerogel with Enhanced Mechanical Properties and Its Physico-chemical Properties (폴리이미드 가교로 기계적 강도가 향상된 실리카 기반 에어로겔의 합성 및 물리화학적 특성 분석)

  • Kim, Jiseung;Choi, Haryeong;Kim, Taehee;Lee, Wonjun;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2022
  • Silica aerogel is a porous material with a very low density and high specific surface area. Still, its application is limited due to its weak mechanical properties due to structural features. To solve this problem, a method of complexing it with various polymers has been proposed. We synthesized polyimide cross-linked silica aerogel by the sol-gel process to obtain high mechanical properties. Tetraethyl orthosilicate (TEOS) was used as a precursor to make silica aerogel, and 3- aminopropyltriethoxysilane (APTES) was used as a coupling agent for cross-linking polyimide. Polyimide was synthesized using pyromellitic dianhydride and 3,5-diaminobenzoic acid, and mechanical properties were improved by crosslinking polyimide with 10 repeating units in the polyimide chain using the reaction formula ${\frac{n_1}{n_2}}={\frac{n}{n+1}}$ To realize silica aerogel, polyimide having various weight ratios was added before gelation, resulting in a 19-fold or greater increase in maximum compressive strength compared to pure silica aerogel. From this study, an enhancement of silica aerogel could be enhanced through polymer cross-linking bonds.

Polyurea Cross-linked Silica Aerogel with Improved Mechanical Strength by Applying a Precursor Having a Plurality of Amino Groups (복수의 아민기를 가지는 전구체를 적용하여 기계적 강도를 향상시킨 폴리우레아 가교 실리카 에어로겔)

  • Lee, Wonjun;Kim, Taehee;Choi, Haryeong;Kim, Jiseung;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.15-20
    • /
    • 2022
  • Aerogel is a material having a nanopore structure based on a high porosity. Due to this high porosity, it has excellent properties not found in conventional materials, but its application has been limited due to low mechanical strength. Therefore, to improve the mechanical strength of the aerogel, polyurea crosslinking was introduced and a precursor having an amine group essential for polyurea polymer formation was selected to synthesize a polyurea crosslinked aerogel composite. In addition, the crosslinking of polyurea was adjusted according to the number of amine groups present in aminosilane. It was confirmed through various analyses that the nanopore structure of the aerogel was maintained to have mesopores. The aerogel thus formed was able to improve the mechanical strength by about two times, and it was confirmed through field emission scanning electron microscope analysis that a one-dimensional polymer was formed on the silica aerogel surface through the introduction of ethylene diamine. The one-dimensional polymer thus formed has improved mechanical properties, resulting in securing an elastic modulus of about 2.66 MPa.

Evaluation of Late Blight Resistance and Agronomic Characteristics of Short-day Adapted Potato Germplasm (단일적응 감자 유전자원들의 역병저항성 및 주요 농업형질 평가)

  • Park, Young-Eun;Cho, Hyun-Mook;Cho, Ji-Hong;Cho, Kwang-Soo;Kim, Hyun-Jun;Landeo, Juan
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.474-481
    • /
    • 2011
  • Potato late blight caused by the fungus Phytophthora infestans is one of the most vital diseases damaging the potato plant. It is for this reason that breeding potato cultivars resistant to late blight is now becoming a major concern around the world. The B3C1 clones has been introduced by the Highland Agriculture Research Center, RDA. The clones which came from International Potato Center in 2005 have a durable resistance to late blight. The clones were bred under a short-day condition in Peru. However, there was still no report on the adaptability of these clones to the long-day condition in Korea. Therefore, this study was conducted to evaluate the late blight resistance and major agronomic characteristics of B3C1 clones under Korea's long-day condition. This study was also done to generate genetic resources for developing new varieties resistant to late blight. In this study it was found out that in naturally infested field with P. infestans, AUDPC (area under disease progress curve) values of all B3C1 clones were significantly lower than those of the control varieties, 'Superior', 'Atlantic', and 'Haryeong'. It was found out that B3C1 clones had a high level of resistance to late blight and that they could be used as genetic resources to breed potato varieties with late blight resistance. However, several undesirable characteristics such as extremely late maturity, excessive growth of stems and stolons, and production of tubers that cannot easily be removed from the stolons were also observed. Among the twenty B3C1 clones, two clones, LB-8 (CIP393077.159) and LB-11 (CIP393371.159), were selected for cultivating at the highland area of Korea. Two B3C1 clones were crossed with Korean breeding lines and clonal selection for the progenies is still in progress.

Effect of Salinity Stress on Growth, Yield, and Proline Accumulation of Cultivated Potatoes (Solanum tuberosum L.) (염 스트레스에 따른 감자 품종 (Solanum tuberosum L.) 간 생육, 수량 및 proline 함량 변이)

  • Im, Ju Sung;Cho, Ji Hong;Cho, Kwang Soo;Chang, Dong Chil;Jin, Yong Ik;Yu, Hong Seob;Kim, Wha Yeong
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.818-829
    • /
    • 2016
  • This study evaluated the responses of 18 potato cultivars to three levels of salinity stress (electrical conductivity, EC: 1.0, 4.0, and $8.0dS{\cdot}m^{-1}$). Stem, leaf, root, chlorophyll, tuber yield, and proline content were investigated and statistically analyzed using analysis of variance (ANOVA) and correlations. Stem number and stem diameter were not affected by salinity, but stem length and aerial weight showed highly significant responses to salinity. Aerial weight decreased with increasing salinity levels in most cultivars, while it increased in some the cultivars 'Daejima', 'Goun', 'Haryeong', and 'LT-8'. Leaf number, leaf area index, and leaf weight were most significantly affected by salinity and the cultivar ${\times}$ salinity interaction. Root length, root weight, total chlorophyll and chlorophyll a were affected by salinity, but not by the cultivar ${\times}$ salinity interaction. The opposite trend was shown in chlorophyll b. Although there was great variability among cultivars, tuber yield decreased in all cultivars, and was most significantly influenced by salinity and the cultivar ${\times}$ salinity interaction. 'Superior', 'Kroda', 'Romana', and 'Duback' gave better tuber yields under salinity at EC 4.0 and $8.0dS{\cdot}m^{-1}$ than the cultivars with better aerial weights. Proline content was increased by salinity in all cultivars, and was more remarkable in the cultivars with better aerial weights than in cultivars such as 'Superior' and 'Kroda' with better tuber yields. Leaf number, leaf area index, leaf weight, and root length parameters were considered to be useful criteria in the evaluation of salt tolerance because of their high positive correlation with tuber yield; however, given its negative correlation with tuber yield under high salinity, proline content was not. Salinity tolerances varied greatly among potato cultivars. The low correlation between growth and yields of aerial parts under high salinity suggests that, in commercial agriculture, it might be more practical to compare relative yields to controls. Additionally, 'Superior', 'Kroda', 'Romana', and 'Duback' might be very useful cultivars to use in breeding programs to develop salinity-tolerant potatoes, as well as for sustainable potato production in saline areas.