DOI QR코드

DOI QR Code

Synthesis of Polyimide Crosslinked Silica-based Aerogel with Enhanced Mechanical Properties and Its Physico-chemical Properties

폴리이미드 가교로 기계적 강도가 향상된 실리카 기반 에어로겔의 합성 및 물리화학적 특성 분석

  • Kim, Jiseung (Department of Materials Science and Engineering, Kangwon National University) ;
  • Choi, Haryeong (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Taehee (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Wonjun (Department of Materials Science and Engineering, Kangwon National University) ;
  • Lee, Hong-Sub (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University)
  • 김지승 (강원대학교 신소재공학과) ;
  • 최하령 (연세대학교 신소재공학과) ;
  • 김태희 (연세대학교 신소재공학과) ;
  • 이원준 (강원대학교 신소재공학과) ;
  • 이홍섭 (경희대학교 정보전자신소재공학과)
  • Received : 2022.10.17
  • Accepted : 2022.10.24
  • Published : 2022.12.30

Abstract

Silica aerogel is a porous material with a very low density and high specific surface area. Still, its application is limited due to its weak mechanical properties due to structural features. To solve this problem, a method of complexing it with various polymers has been proposed. We synthesized polyimide cross-linked silica aerogel by the sol-gel process to obtain high mechanical properties. Tetraethyl orthosilicate (TEOS) was used as a precursor to make silica aerogel, and 3- aminopropyltriethoxysilane (APTES) was used as a coupling agent for cross-linking polyimide. Polyimide was synthesized using pyromellitic dianhydride and 3,5-diaminobenzoic acid, and mechanical properties were improved by crosslinking polyimide with 10 repeating units in the polyimide chain using the reaction formula ${\frac{n_1}{n_2}}={\frac{n}{n+1}}$ To realize silica aerogel, polyimide having various weight ratios was added before gelation, resulting in a 19-fold or greater increase in maximum compressive strength compared to pure silica aerogel. From this study, an enhancement of silica aerogel could be enhanced through polymer cross-linking bonds.

실리카 에어로겔은 매우 낮은 밀도, 고비표면적을 갖는 다공성 물질로 구조적 특성으로 인한 취약한 기계적 특성 때문에 응용이 제한되어 이를 해결하기 위한 폴리머와의 다양한 복합화 기술이 제안되어 왔다. 본 연구에서는 에어로겔의 기계적 강도를 향상시키고자 폴리이미드가 가교된 실리카 에어로겔을 합성하였다. 실리카 에어로겔을 만들기 위한 전구체로 tetraethyl orthosilicate(TEOS)가 사용되었고, 3-Aminopropyltriethoxysilane(APTES)은 폴리이미드와 가교 결합을 하기 위한 coupling agent로 사용되었다. 폴리이미드는 pyromellitic dianhydride, 3, 5-diaminobenzoic acid를 사용해 합성되었고 ${\frac{n_1}{n_2}}={\frac{n}{n+1}}$의 반응식을 사용해 폴리이미드 체인의 반복 단위 수가 10인 폴리이미드를 가교 결합하여 기계적 물성이 향상된 실리카 에어로겔을 구현하였다. 겔화 전에 다양한 중량비를 갖는 폴리이미드를 첨가하여 최대 압축 강도가 실리카 에어로겔 대비 19배 이상 증가가 관찰되어 폴리머 가교결합을 통한 실리카 에어로겔의 기계적 강도가 크게 개선될 수 있음을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A5A1019131).

References

  1. L. W. Hrubesh, "Aerogel applications", J Non-Cryst Solids, 225, 335 (1998). https://doi.org/10.1016/S0022-3093(98)00135-5
  2. C. A. Morris, M. L. Anderson, R. M. Stroud, C. L. Merzbacher, and D. R. Rolison, "Silica sol as a nanoglue: flexible synthesis of composite aerogels", Science, 284, 622 (1999). https://doi.org/10.1126/science.284.5414.622
  3. A. C. Pierre and G. M. Pajonk, "Chemistry of aerogels and their application", Chem Rev, 102, 4243 (2002). https://doi.org/10.1021/cr0101306
  4. M. Koebel, A. Rigacci, and P. Achard, "Aerogel-based thermal superinsulation: an overview", J Sol-Gel Sci Technol, 63, 315 (2012). https://doi.org/10.1007/s10971-012-2792-9
  5. E. Cuce, P. M. Cuce, C. J. Wood, and S. B. Riffat, "Toward aerogel based thermal superinsulation in buildings: a comprehensive review", Renew Sustain Energy Rev, 34, 273 (2014). https://doi.org/10.1016/j.rser.2014.03.017
  6. M. A. Aegerter, N. Leventis, and M. M. Koebel, "Aerogels handbook", Springer-Verlag, New York, NY (2011).
  7. A. Karout, P. Buisson, A. Perrard, and A. C. Pierre, "Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts", J Sol-Gel Sci Technol, 36, 163 (2005). https://doi.org/10.1007/s10971-005-5288-z
  8. J. Yang, S. Li, Y. Luo, and F. Wang, "Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading", Carbon, 49, 1542 (2011). https://doi.org/10.1016/j.carbon.2010.12.021
  9. Q. F. Gao, J. Feng, C. R. Zhang, J. Z. Feng, W. Wu, and Y. G. Jiang, "Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites", J Chin Ceram Soc, 37, 1 (2009.)
  10. B. Yuan, S. Ding, D. Wang, G. Wang, and H. Li, "Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming", Mater Lett, 75, 204 (2012). https://doi.org/10.1016/j.matlet.2012.01.114
  11. Y. Liao, H. Wu, Y. Ding, S. Yin, M. Wang, and A. Cao, "Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites", J Sol-Gel Sci Technol, 63, 445 (2012). https://doi.org/10.1007/s10971-012-2806-7
  12. M. A. B. Meador, S. L. Vivod, L. McCorkle, D. Quade, R. M. Sullivan, L. J. Ghosn, N. Clark, and L. A. Capadona, "Reinforcing polymer cross-linked aerogels with carbon nanofibers", J Mater Chem, 18, 1843 (2008). https://doi.org/10.1039/b800602d
  13. G. Zhang, A. Dass, A. M. M. Rawashdeh, J. Thomas, J. A. Counsil, C. S. Leventis, E. F. Fabrizio, F. Ilhan, P. Vassilaras, D. A. Scheiman, L. Mccorkel, A. Palczer, C. J. Johnston, M. A. Meador, and N. Leventis, "Isocyanate-cross-linked silica aerogel monoliths: preparation and characterization", J Non-Cryst Solids, 350, 152 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.06.041
  14. L. A. Capadona, M. A. B. Meador, A. Alunni, E. Fabrizio, P. Vassilaras, and N. Leventis, "Flexible, low-density polymer cross-linked silica aerogels", Polymer, 47, 5754 (2006). https://doi.org/10.1016/j.polymer.2006.05.073
  15. F. Sabri, J. Marchetta, and K. M. Smith, "Thermal conductivity studies of a polyurea cross-linked silica aerogel-RTV 655 compound for cryogenic propellant tank applications in space", Acta Astronaut, 91, 173 (2013). https://doi.org/10.1016/j.actaastro.2013.06.001
  16. H. Yang, X. Kong, Y. Zhang, C. Wu, and E. Cao, "Mechanical properties of polymer-modified silica aerogels dried under ambient pressure", J Non-Cryst Solids, 357, 3447 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.06.017
  17. M. A. B. Meador, E. F. Fabrizio, F. Ilhan, A. Dass, G. Zhang, P. Vassilaras, J. C. Johnston, and N. Leventis, "Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials", Chem Mater, 17, 1085 (2005). https://doi.org/10.1021/cm048063u
  18. M. A. B. Meador, C. M. Scherzer, S. L. Vivod, D. Quade, and B. N. Nguyen, "Epoxy reinforced aerogels made using a streamlined process", ACS Appl Mater Interfaces, 2, 2162 (2010). https://doi.org/10.1021/am100422x
  19. D. Ge, L. Yang, Y. Li, and J. P. Zhao., "Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite", J Non-Cryst Solids, 355, 2610 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.09.017
  20. Z. Ahmad and F. Al-Sagheer, "Novel epoxy-silica nano-composites using epoxy-modified silica hyper-branched structure", Progress Org Coat, 80, 65 (2015).
  21. Z. Shao, G. Wu, X. Cheng, and Y. Zhao, "Rapid synthesis of amine cross-linked epoxy and methyl co-modified silica aerogels by ambient pressure drying", J Non-Cryst Solids, 358, 2612 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.06.013
  22. J. P. Randall, M. A. B. Meador, and S. C. Jana, "Polymer reinforced silica aerogels: effects of dimethyldiethoxysilane and bis (trimethoxysilylpropyl) amine as silane precursors", J Mater Chem A, 1, 6642 (2013). https://doi.org/10.1039/c3ta11019b
  23. S. -A. Mirshafiei-Langari, V. Haddadi-Asl, H. Roghani-Mamaqani, M. Sobani, and K. Khezri, "Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization", Polym Compos, 34, 1648 (2013). https://doi.org/10.1002/pc.22565
  24. S. A. Mirshafiei-Langari, H. Roghani-Mamaqani, M. Sobani, and L. Khezri, "In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: kinetic study and investigation of thermal properties", J Polym Res, 20, 163 (2013). https://doi.org/10.1007/s10965-013-0163-z
  25. H. Maleki, L Duraes, and A. Portugal, "Synthesis of mechanically reinforced silica aerogels via surface-initiated reversible additionfragmentation chain transfer (RAFT) polymerization", J Mater Chem A, 3, 1594 (2015). https://doi.org/10.1039/C4TA05618C
  26. S. Mulik, C. Sotiriou-Leventis, G. Churu, H. Lu, and N. Leventis., "Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization", Chem Mater, 20, 5035 (2008). https://doi.org/10.1021/cm800963h
  27. H. Maleki, L. Duraes, and A. Portugal, "Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications", Microporous Mesoporous Mater, 197, 116 (2014). https://doi.org/10.1016/j.micromeso.2014.06.003
  28. L. S. White, M. F. Bertino, S. Saeed, and K. Saoud, "Influence of silica derivatizer and monomer functionality and concentration on the mechanical properties of rapid synthesis cross-linked aerogels", Microporous Mesoporous Mater, 217, 244 (2015). https://doi.org/10.1016/j.micromeso.2015.06.019
  29. L. S. White, M. F. Bertino, G. Kitchen, J. Young, C. Newton, and R. Al-Soubaihi, "Shortened aerogel fabrication times using an ethanol-water azeotrope as a gelation and drying solvent", J Mater Chem A, 3(2), 762 (2015). https://doi.org/10.1039/C4TA04633A
  30. T. Matsuura, N. Yamada, S. Nishi, and Y. Hasuda, "Polyimides derived from 2,2'-bis (trifluoromethyl)-4, 4'-diaminobiphenyl. III: properties control for polymer blends and copolymerization of fluorinated polyimides", Macromolecules, 26, 419 (1993). https://doi.org/10.1021/ma00055a002
  31. J. Guo, B. N. Nguyen, L. Li, M. A. B. Meador, D. A. Scheiman, and M. Cakmak, "Clay reinforced polyimide/silica hybrid aerogel", J Mater Chem A, 1(24), 7211 (2013). https://doi.org/10.1039/c3ta00439b
  32. P. Yan, B. Zhou, and A. Du, "Synthesis of polyimide crosslinked silica aerogels with good acoustic performance", RSC Adv, 4, 58252 (2014). https://doi.org/10.1039/C4RA08846H
  33. Y. Cheng, X. Zhang, and Y. Qin, "Super-elasticity at 4K of covalently crosslinked polyimide aerogels with negative Poisson's ratio", Nat Commun, 12, 4092 (2021). https://doi.org/10.1038/s41467-021-24388-y
  34. W. Fan., L. Zuo, Y. Zhang, Y. Chen, and T, Liu, "Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure", Compos Sci Technol, 156, 186 (2018). https://doi.org/10.1016/j.compscitech.2017.12.034
  35. H. Yu, X. Liang, J. Wang, M. Wang, and S. Yang, "Preparation and characterization of hydrophobic silica aerogel sphere products by co-precursor method", Solid State Sciences, 48, 155 (2015). https://doi.org/10.1016/j.solidstatesciences.2015.08.005
  36. J. N. Mahindrakar, Y. S. Patil, P. H. Salunkhe, S. S. Ankushrao, V. N. Kadam, V. P. Ubale, and A. A. Ghanwat, "Optically transparent, organosoluble poly(ether-amide)s bearing triptycene unit; synthesis and characterization", J Macromol. Sci., Part A, 55(9), 658 (2018). https://doi.org/10.1080/10601325.2018.1510291
  37. R. Sulub-Sulub, M. I. Loria-Bastarrachea, J. L. SantiagoGarcia and M. Aguilar-Vega, "Synthesis and characterization of new polyimides from diphenylpyrene dianhydride and ortho methyl substituted diamines", RSC Advances, 8(56), 31881 (2018). https://doi.org/10.1039/c8ra05991h
  38. Y. Wu, H. Qiu, J. Sun, Y. Wang, C. Gao, and Y. Liu, "A silsesquioxane-based flexible polyimide aerogel with high hydrophobicity and good adsorption for liquid pollutants in wastewater", J Mater Sci 56, 3576 (2021). https://doi.org/10.1007/s10853-020-05460-2