Browse > Article
http://dx.doi.org/10.6117/kmeps.2022.29.4.009

Synthesis of Polyimide Crosslinked Silica-based Aerogel with Enhanced Mechanical Properties and Its Physico-chemical Properties  

Kim, Jiseung (Department of Materials Science and Engineering, Kangwon National University)
Choi, Haryeong (Department of Materials Science and Engineering, Yonsei University)
Kim, Taehee (Department of Materials Science and Engineering, Yonsei University)
Lee, Wonjun (Department of Materials Science and Engineering, Kangwon National University)
Lee, Hong-Sub (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.29, no.4, 2022 , pp. 9-14 More about this Journal
Abstract
Silica aerogel is a porous material with a very low density and high specific surface area. Still, its application is limited due to its weak mechanical properties due to structural features. To solve this problem, a method of complexing it with various polymers has been proposed. We synthesized polyimide cross-linked silica aerogel by the sol-gel process to obtain high mechanical properties. Tetraethyl orthosilicate (TEOS) was used as a precursor to make silica aerogel, and 3- aminopropyltriethoxysilane (APTES) was used as a coupling agent for cross-linking polyimide. Polyimide was synthesized using pyromellitic dianhydride and 3,5-diaminobenzoic acid, and mechanical properties were improved by crosslinking polyimide with 10 repeating units in the polyimide chain using the reaction formula ${\frac{n_1}{n_2}}={\frac{n}{n+1}}$ To realize silica aerogel, polyimide having various weight ratios was added before gelation, resulting in a 19-fold or greater increase in maximum compressive strength compared to pure silica aerogel. From this study, an enhancement of silica aerogel could be enhanced through polymer cross-linking bonds.
Keywords
Polyimide; Silica; Aerogel; Cross-linking; Mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Zhang, A. Dass, A. M. M. Rawashdeh, J. Thomas, J. A. Counsil, C. S. Leventis, E. F. Fabrizio, F. Ilhan, P. Vassilaras, D. A. Scheiman, L. Mccorkel, A. Palczer, C. J. Johnston, M. A. Meador, and N. Leventis, "Isocyanate-cross-linked silica aerogel monoliths: preparation and characterization", J Non-Cryst Solids, 350, 152 (2004).   DOI
2 L. A. Capadona, M. A. B. Meador, A. Alunni, E. Fabrizio, P. Vassilaras, and N. Leventis, "Flexible, low-density polymer cross-linked silica aerogels", Polymer, 47, 5754 (2006).   DOI
3 B. Yuan, S. Ding, D. Wang, G. Wang, and H. Li, "Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming", Mater Lett, 75, 204 (2012).   DOI
4 Y. Liao, H. Wu, Y. Ding, S. Yin, M. Wang, and A. Cao, "Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites", J Sol-Gel Sci Technol, 63, 445 (2012).   DOI
5 F. Sabri, J. Marchetta, and K. M. Smith, "Thermal conductivity studies of a polyurea cross-linked silica aerogel-RTV 655 compound for cryogenic propellant tank applications in space", Acta Astronaut, 91, 173 (2013).   DOI
6 H. Yang, X. Kong, Y. Zhang, C. Wu, and E. Cao, "Mechanical properties of polymer-modified silica aerogels dried under ambient pressure", J Non-Cryst Solids, 357, 3447 (2011).   DOI
7 M. A. B. Meador, C. M. Scherzer, S. L. Vivod, D. Quade, and B. N. Nguyen, "Epoxy reinforced aerogels made using a streamlined process", ACS Appl Mater Interfaces, 2, 2162 (2010).   DOI
8 D. Ge, L. Yang, Y. Li, and J. P. Zhao., "Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite", J Non-Cryst Solids, 355, 2610 (2009).   DOI
9 M. A. B. Meador, S. L. Vivod, L. McCorkle, D. Quade, R. M. Sullivan, L. J. Ghosn, N. Clark, and L. A. Capadona, "Reinforcing polymer cross-linked aerogels with carbon nanofibers", J Mater Chem, 18, 1843 (2008).   DOI
10 M. A. B. Meador, E. F. Fabrizio, F. Ilhan, A. Dass, G. Zhang, P. Vassilaras, J. C. Johnston, and N. Leventis, "Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials", Chem Mater, 17, 1085 (2005).   DOI
11 S. A. Mirshafiei-Langari, H. Roghani-Mamaqani, M. Sobani, and L. Khezri, "In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: kinetic study and investigation of thermal properties", J Polym Res, 20, 163 (2013).   DOI
12 L. S. White, M. F. Bertino, S. Saeed, and K. Saoud, "Influence of silica derivatizer and monomer functionality and concentration on the mechanical properties of rapid synthesis cross-linked aerogels", Microporous Mesoporous Mater, 217, 244 (2015).   DOI
13 L. S. White, M. F. Bertino, G. Kitchen, J. Young, C. Newton, and R. Al-Soubaihi, "Shortened aerogel fabrication times using an ethanol-water azeotrope as a gelation and drying solvent", J Mater Chem A, 3(2), 762 (2015).   DOI
14 T. Matsuura, N. Yamada, S. Nishi, and Y. Hasuda, "Polyimides derived from 2,2'-bis (trifluoromethyl)-4, 4'-diaminobiphenyl. III: properties control for polymer blends and copolymerization of fluorinated polyimides", Macromolecules, 26, 419 (1993).   DOI
15 H. Maleki, L Duraes, and A. Portugal, "Synthesis of mechanically reinforced silica aerogels via surface-initiated reversible additionfragmentation chain transfer (RAFT) polymerization", J Mater Chem A, 3, 1594 (2015).   DOI
16 J. Yang, S. Li, Y. Luo, and F. Wang, "Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading", Carbon, 49, 1542 (2011).   DOI
17 Z. Ahmad and F. Al-Sagheer, "Novel epoxy-silica nano-composites using epoxy-modified silica hyper-branched structure", Progress Org Coat, 80, 65 (2015).
18 Z. Shao, G. Wu, X. Cheng, and Y. Zhao, "Rapid synthesis of amine cross-linked epoxy and methyl co-modified silica aerogels by ambient pressure drying", J Non-Cryst Solids, 358, 2612 (2012).   DOI
19 J. P. Randall, M. A. B. Meador, and S. C. Jana, "Polymer reinforced silica aerogels: effects of dimethyldiethoxysilane and bis (trimethoxysilylpropyl) amine as silane precursors", J Mater Chem A, 1, 6642 (2013).   DOI
20 S. -A. Mirshafiei-Langari, V. Haddadi-Asl, H. Roghani-Mamaqani, M. Sobani, and K. Khezri, "Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization", Polym Compos, 34, 1648 (2013).   DOI
21 S. Mulik, C. Sotiriou-Leventis, G. Churu, H. Lu, and N. Leventis., "Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization", Chem Mater, 20, 5035 (2008).   DOI
22 Q. F. Gao, J. Feng, C. R. Zhang, J. Z. Feng, W. Wu, and Y. G. Jiang, "Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites", J Chin Ceram Soc, 37, 1 (2009.)
23 H. Yu, X. Liang, J. Wang, M. Wang, and S. Yang, "Preparation and characterization of hydrophobic silica aerogel sphere products by co-precursor method", Solid State Sciences, 48, 155 (2015).   DOI
24 R. Sulub-Sulub, M. I. Loria-Bastarrachea, J. L. SantiagoGarcia and M. Aguilar-Vega, "Synthesis and characterization of new polyimides from diphenylpyrene dianhydride and ortho methyl substituted diamines", RSC Advances, 8(56), 31881 (2018).   DOI
25 L. W. Hrubesh, "Aerogel applications", J Non-Cryst Solids, 225, 335 (1998).   DOI
26 H. Maleki, L. Duraes, and A. Portugal, "Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications", Microporous Mesoporous Mater, 197, 116 (2014).   DOI
27 A. C. Pierre and G. M. Pajonk, "Chemistry of aerogels and their application", Chem Rev, 102, 4243 (2002).   DOI
28 M. A. Aegerter, N. Leventis, and M. M. Koebel, "Aerogels handbook", Springer-Verlag, New York, NY (2011).
29 A. Karout, P. Buisson, A. Perrard, and A. C. Pierre, "Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts", J Sol-Gel Sci Technol, 36, 163 (2005).   DOI
30 J. Guo, B. N. Nguyen, L. Li, M. A. B. Meador, D. A. Scheiman, and M. Cakmak, "Clay reinforced polyimide/silica hybrid aerogel", J Mater Chem A, 1(24), 7211 (2013).   DOI
31 P. Yan, B. Zhou, and A. Du, "Synthesis of polyimide crosslinked silica aerogels with good acoustic performance", RSC Adv, 4, 58252 (2014).   DOI
32 Y. Cheng, X. Zhang, and Y. Qin, "Super-elasticity at 4K of covalently crosslinked polyimide aerogels with negative Poisson's ratio", Nat Commun, 12, 4092 (2021).   DOI
33 W. Fan., L. Zuo, Y. Zhang, Y. Chen, and T, Liu, "Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure", Compos Sci Technol, 156, 186 (2018).   DOI
34 E. Cuce, P. M. Cuce, C. J. Wood, and S. B. Riffat, "Toward aerogel based thermal superinsulation in buildings: a comprehensive review", Renew Sustain Energy Rev, 34, 273 (2014).   DOI
35 J. N. Mahindrakar, Y. S. Patil, P. H. Salunkhe, S. S. Ankushrao, V. N. Kadam, V. P. Ubale, and A. A. Ghanwat, "Optically transparent, organosoluble poly(ether-amide)s bearing triptycene unit; synthesis and characterization", J Macromol. Sci., Part A, 55(9), 658 (2018).   DOI
36 Y. Wu, H. Qiu, J. Sun, Y. Wang, C. Gao, and Y. Liu, "A silsesquioxane-based flexible polyimide aerogel with high hydrophobicity and good adsorption for liquid pollutants in wastewater", J Mater Sci 56, 3576 (2021).   DOI
37 C. A. Morris, M. L. Anderson, R. M. Stroud, C. L. Merzbacher, and D. R. Rolison, "Silica sol as a nanoglue: flexible synthesis of composite aerogels", Science, 284, 622 (1999).   DOI
38 M. Koebel, A. Rigacci, and P. Achard, "Aerogel-based thermal superinsulation: an overview", J Sol-Gel Sci Technol, 63, 315 (2012).   DOI