DOI QR코드

DOI QR Code

Study on the Hydrophobicity and Mechanical Properties of Silica-Based Aerogel by Introducing Organic Benzene

벤젠 유기물 도입에 따른 실리카 기반 에어로겔의 소수성 및 기계적 특성 연구

  • Qi, Wang (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Jihun (Department of Materials Science and Engineering, Yonsei University) ;
  • Dhavale, Rushikesh P. (Department of Materials Science and Engineering, Yonsei University) ;
  • Choi, Haryeong (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Taehee (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • ;
  • 이지훈 (연세대학교 신소재공학과) ;
  • ;
  • 최하령 (연세대학교 신소재공학과) ;
  • 김태희 (연세대학교 신소재공학과) ;
  • 박형호 (연세대학교 신소재공학과)
  • Received : 2020.08.24
  • Accepted : 2020.12.07
  • Published : 2020.12.30

Abstract

The silica aerogels with benzene-bridged were designed to have uniform network structure, ordered pore structure, improved mechanical properties and excellent textural properties. Adding organic to enhance the mechanical properties of silica aerogels is a common method, but textural properties of aerogels with organic are reduced due to the organic-inorganic phase separation. In this paper, we use a simple and low-cost method to increase mechanical properties while maintaining textural properties of SiO2 aerogels. Two types of benzene-bridged precursors were prepared to study the effect of the number of hydroxyl band on the textural and mechanical properties. The porous silica aerogel was prepared by a simple, cost effective and pollution-free sol-gel method. This method does not require additional silylating reagents. The benzene-bridged silica aerogel samples prepared had excellent textural properties, high specific surface area (1,326 ㎡/g), porous structure and hydrophobicity (>140°). The mechanical strength of 2T4 is more than 5 times that of pure silica aerogel.

실리카-벤젠 에어로겔은 균일하고 정렬된 네트워크 기공 구조, 개선된 기계적 특성을 갖도록 합성되었다. 실리카 에어로겔의 기계적 특성을 향상시키기 위해 유기물을 첨가하는 것이 일반적인 방법이지만, 기공 특성이 유-무기 상분리 현상으로 인해 감소한다. 본 연구에서는 실리카 기반 에어로겔의 기공 특성을 유지하면서 동시에 기계적 물성을 높이기 위해 간단하고 저렴한 방법을 사용하였다. 기공 및 기계적 특성에 대한 하이드록실 결합수의 영향을 연구하기 위해 두 가지 유형의 벤젠 브리지 전구체를 사용하였다. 다공성 실리카 에어로겔은 간단하고 비용-효율적이며 무공해인 졸-겔방법으로 제조되었다. 최종적으로 제조된 실리카-벤젠 에어로겔은 추가적인 silylating reagents없이 우수한 기공 특성, 높은 비 표면적(1,326 ㎡/g), 다공성 구조 및 소수성(>140°)을 가졌다. 일부 샘플(2T4)의 경우 기계적 강도는 순수 실리카 에어로겔의 5 배 이상을 보였다.

Keywords

References

  1. D. L. Ou and A. B. Seddon, "Near- and mid-infrared spectroscopy of sol-gel derived ormosils: vinyl and phenyl silicates", J. Non-Cryst. Solids., 187, 210 (1997).
  2. J. P. Vareda, P. Maximiano, L. P. Cunha, A. F. Ferreira, P. N. Simoes, and L. Duraes, "Effect of different types of surfactants on the microstructure of methyltrimethoxysilane-derived silica aerogels: A combined experimental and computational approach", J. Colloid and Interf. Sci., 64, 512 (2018).
  3. D. B. Mahadik, R. V. Lakshmi, and H. C. Barshilia, "High performance single layer nano porous antireflection coatings on glass by sol-gel process for solar energy applications", Sol. Energ. Mat. Sol. C., 61, 140 (2015).
  4. D. B. Mahadik, H. N. R. Jung, W. Han, H. H. Cho, and H. H. Park, "Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process", Compos. Sci. Technol., 45, 147 (2017).
  5. L. Ren, S. Cui, F. Cao, and Q. Guo, "An easy way to prepare monolithic inorganic oxide aerogels", Angew. Chem. Int. Ed., 10147, 53 (2014).
  6. J. E. Amonette and J. Matyas, "Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review", Micropor. Mesopor. Mat., 100, 250 (2017). https://doi.org/10.1016/j.micromeso.2006.11.010
  7. H. Maleki, "Recent advances in aerogels for environmental remediation applications: a review", Chem. Eng. J., 98, 300 (2016).
  8. W. Liu, A. K. Herrmann, D. Geiger, L. Borchardt, F. Simon, S. Kaskel, N. Gaponik, and A. Eychmuller, "High?performance electrocatalysis on palladium aerogels", Angew. Chem. Int. Ed., 5743, 51 (2012).
  9. S. Zhao, Z. Zhang, G. Sebe, R. Wu, R. V. Rivera Virtudazo, P. Tingaut, and M. M. Koebel, "Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization", Adv. Funct. Mater., 2326, 25 (2015).
  10. D. B. Mahadik, R. V. Lakshmi, and H. C. Barshilia, "High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications", Sol. Energ. Mat. Sol. C., 61, 140 (2015).
  11. G. Zu, J. Shen, W. Wang, L. Zou, Y. Lian, Z. Zhang, B. Liu, and F. Zhang, "Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts", Chem. Mater., 5761, 26 (2014).
  12. Q. Zheng, Z. Cai, and S. Gong, "Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents", J. Mater. Chem. A., 3110, 2 (2014).
  13. F. Jiang and Y. L. Hsieh, "Amphiphilic superabsorbent cellulose nanofibril aerogels", J. Mater. Chem. A., 6337, 2 (2014).
  14. K. Y. Lee, V. D. Phadtare, H. Choi, S. H. Moon, J. I. Kim, Y. K. Bae, and H. H. Park, "Chemically bonded thermally expandable microsphere-silica composite aerogel with thermal insulation property for industrial use", J. Microelectron. Packag. Soc., 26(2), 23 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.0023
  15. S. Shafi, R. Navik, X. Ding, and Y. P. Zhao, "Improved heat insulation and mechanical properties of silica aerogel/glassfiber composite by impregnating silica gel", J. Non-Cryst. Solids, 78, 503 (2019).
  16. Y. Kobayashi, T. Saito, and A. Isogai, "Aerogels with 3D ordered nanofiber skeletons of liquid?crystalline nanocellulose derivatives as tough and transparent insulators", Angew. Chem. Int. Ed., 10394, 53 (2014).
  17. S. Yun, H. Luo, and Y. Gao, "Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity", J. Mater. Chem. A., 14542, 2 (2014).
  18. R. P. Dhavale, V. G. Parale, T. Kim, H. Choi, Y. Kim, K. Y. Lee, H. N. R. Jung, and H. H. Park, "Enhancement in the Textural Properties and Hydrophobicity of Tetraethoxysilanebased Silica Aerogels by Phenyl Surface Modification", J. Microelectron. Packag. Soc., 27(2), 27 (2020). https://doi.org/10.6117/KMEPS.2020.27.2.027
  19. V. G. Parale, T. Kim, K. Y. Lee, V. D. Phadtare, R. P. Dhavale, H. N. R. Jung, and H. H. Park, "Hydrophobic TiO2-SiO2-composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity", Ceram. Int., 4939, 46 (2020).
  20. H. Choi, V. G. Parale, T. Kim, Y. S. Kim, J. Tae, and H. H. Park, "Structural and mechanical properties of hybrid silica aerogel formed using triethoxy(1-phenylethenyl)silane", Microporous Mesoporous Mater., 298(15), 110092 (2020). https://doi.org/10.1016/j.micromeso.2020.110092
  21. E. N. Khimich, G. S. Buslaev, A. V. Zdravkov, N. N. Khimich, and M. G. Voronkov, "Polysiloxane structures cross-linked with hydroquinone and phloroglucinol", Russ. J. Appl. Chem., 1410, 81 (2008).
  22. D. B. Mahadik, Y. K. Lee, N. K. Chavan, S. A. Mahadik, and H. H. Park, "Monolithic and shrinkage-free hydrophobic silica aerogels via new rapid supercritical extraction process", J. Supercrit. Fluid., 84, 107 (2016).
  23. M. H. Stockett and S. B. Nielsen, "Transition energies of benzoquinone anions are immune to symmetry breaking by a single water molecule", Phys. Chem. Chem. Phys., 6996, 18 (2016).
  24. J. Guo, B. N. Nguyen, L. Li, M. A. B. Meador, D. A. Scheiman, and M. Cakmak, "Clay reinforced polyimide/silica hybrid aerogel", J. Mater. Chem. A., 7211, 1 (2013).
  25. D. B. Mahadik, H. N. R. Jung, W. Han, H. H. Cho, and H. H. Park, "Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process", Compos. Sci. Technol., 45, 147 (2017).
  26. A. V. Rao, R. R. Kalesh, and G. M. Pajonk, "Hydrophobicity and physical properties of TEOS based silica aerogels using phenyltriethoxysilane as a synthesis component", J. Mater. Sci., 4407, 38 (2003).
  27. D. B. Mahadik, A. V. Rao, A. P. Rao, P. B. Wagh, S. V. Ingale, and S. C. Gupta, "Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels", J. Colloid Interface Sci., 298, 356 (2011). https://doi.org/10.1016/j.jcis.2005.12.040
  28. D. B. Mahadik, A. V. Rao, V. G. Parale, M. S. Kavale, P. B. Wagh, S. V. Ingale, and S. C. Gupta, "Effect of surface composition and roughness on the apparent surface free energy of silica aerogel materials", Appl. Phys. Lett., 104104, 99 (2011).
  29. L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen, and C. Y. Su, "A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels", Nat. Commun., 1, 1774 (2013).
  30. E. P. Barret, L. G. Joyner, and P. P. Halenda, "The determination of pore volume and area distributions in porous substances", J. Am. Chem. Soc., 373, 73 (1951).
  31. G. Zu, K. Kanamori, T. Shimizu, Y. Zhu, A. Maeno, H. Kaji, and K. Nakanishi, "Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators", J. Shen, Chem. Mater., 2759, 30 (2018).
  32. D. B. Mahadik, K. Y. Lee, R. V. Ghorpade, and H. H. Park, "Superhydrophobic and compressible silica-polyHIPE covalently bonded porous networks via emulsion templating for oil spill cleanup and recovery", Sci. Rep., 16783, 8 (2018).