Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.4.135

Study on the Hydrophobicity and Mechanical Properties of Silica-Based Aerogel by Introducing Organic Benzene  

Qi, Wang (Department of Materials Science and Engineering, Yonsei University)
Lee, Jihun (Department of Materials Science and Engineering, Yonsei University)
Dhavale, Rushikesh P. (Department of Materials Science and Engineering, Yonsei University)
Choi, Haryeong (Department of Materials Science and Engineering, Yonsei University)
Kim, Taehee (Department of Materials Science and Engineering, Yonsei University)
Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.4, 2020 , pp. 135-141 More about this Journal
Abstract
The silica aerogels with benzene-bridged were designed to have uniform network structure, ordered pore structure, improved mechanical properties and excellent textural properties. Adding organic to enhance the mechanical properties of silica aerogels is a common method, but textural properties of aerogels with organic are reduced due to the organic-inorganic phase separation. In this paper, we use a simple and low-cost method to increase mechanical properties while maintaining textural properties of SiO2 aerogels. Two types of benzene-bridged precursors were prepared to study the effect of the number of hydroxyl band on the textural and mechanical properties. The porous silica aerogel was prepared by a simple, cost effective and pollution-free sol-gel method. This method does not require additional silylating reagents. The benzene-bridged silica aerogel samples prepared had excellent textural properties, high specific surface area (1,326 ㎡/g), porous structure and hydrophobicity (>140°). The mechanical strength of 2T4 is more than 5 times that of pure silica aerogel.
Keywords
sol-gel; benzene-bridged; hydrophobic; textural property; mechanical property;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 D. L. Ou and A. B. Seddon, "Near- and mid-infrared spectroscopy of sol-gel derived ormosils: vinyl and phenyl silicates", J. Non-Cryst. Solids., 187, 210 (1997).
2 J. P. Vareda, P. Maximiano, L. P. Cunha, A. F. Ferreira, P. N. Simoes, and L. Duraes, "Effect of different types of surfactants on the microstructure of methyltrimethoxysilane-derived silica aerogels: A combined experimental and computational approach", J. Colloid and Interf. Sci., 64, 512 (2018).
3 D. B. Mahadik, R. V. Lakshmi, and H. C. Barshilia, "High performance single layer nano porous antireflection coatings on glass by sol-gel process for solar energy applications", Sol. Energ. Mat. Sol. C., 61, 140 (2015).
4 D. B. Mahadik, H. N. R. Jung, W. Han, H. H. Cho, and H. H. Park, "Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process", Compos. Sci. Technol., 45, 147 (2017).
5 L. Ren, S. Cui, F. Cao, and Q. Guo, "An easy way to prepare monolithic inorganic oxide aerogels", Angew. Chem. Int. Ed., 10147, 53 (2014).
6 J. E. Amonette and J. Matyas, "Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review", Micropor. Mesopor. Mat., 100, 250 (2017).   DOI
7 H. Maleki, "Recent advances in aerogels for environmental remediation applications: a review", Chem. Eng. J., 98, 300 (2016).
8 W. Liu, A. K. Herrmann, D. Geiger, L. Borchardt, F. Simon, S. Kaskel, N. Gaponik, and A. Eychmuller, "High?performance electrocatalysis on palladium aerogels", Angew. Chem. Int. Ed., 5743, 51 (2012).
9 S. Zhao, Z. Zhang, G. Sebe, R. Wu, R. V. Rivera Virtudazo, P. Tingaut, and M. M. Koebel, "Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization", Adv. Funct. Mater., 2326, 25 (2015).
10 D. B. Mahadik, R. V. Lakshmi, and H. C. Barshilia, "High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications", Sol. Energ. Mat. Sol. C., 61, 140 (2015).
11 G. Zu, J. Shen, W. Wang, L. Zou, Y. Lian, Z. Zhang, B. Liu, and F. Zhang, "Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts", Chem. Mater., 5761, 26 (2014).
12 Q. Zheng, Z. Cai, and S. Gong, "Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents", J. Mater. Chem. A., 3110, 2 (2014).
13 F. Jiang and Y. L. Hsieh, "Amphiphilic superabsorbent cellulose nanofibril aerogels", J. Mater. Chem. A., 6337, 2 (2014).
14 K. Y. Lee, V. D. Phadtare, H. Choi, S. H. Moon, J. I. Kim, Y. K. Bae, and H. H. Park, "Chemically bonded thermally expandable microsphere-silica composite aerogel with thermal insulation property for industrial use", J. Microelectron. Packag. Soc., 26(2), 23 (2019).   DOI
15 S. Shafi, R. Navik, X. Ding, and Y. P. Zhao, "Improved heat insulation and mechanical properties of silica aerogel/glassfiber composite by impregnating silica gel", J. Non-Cryst. Solids, 78, 503 (2019).
16 H. Choi, V. G. Parale, T. Kim, Y. S. Kim, J. Tae, and H. H. Park, "Structural and mechanical properties of hybrid silica aerogel formed using triethoxy(1-phenylethenyl)silane", Microporous Mesoporous Mater., 298(15), 110092 (2020).   DOI
17 Y. Kobayashi, T. Saito, and A. Isogai, "Aerogels with 3D ordered nanofiber skeletons of liquid?crystalline nanocellulose derivatives as tough and transparent insulators", Angew. Chem. Int. Ed., 10394, 53 (2014).
18 S. Yun, H. Luo, and Y. Gao, "Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity", J. Mater. Chem. A., 14542, 2 (2014).
19 R. P. Dhavale, V. G. Parale, T. Kim, H. Choi, Y. Kim, K. Y. Lee, H. N. R. Jung, and H. H. Park, "Enhancement in the Textural Properties and Hydrophobicity of Tetraethoxysilanebased Silica Aerogels by Phenyl Surface Modification", J. Microelectron. Packag. Soc., 27(2), 27 (2020).   DOI
20 V. G. Parale, T. Kim, K. Y. Lee, V. D. Phadtare, R. P. Dhavale, H. N. R. Jung, and H. H. Park, "Hydrophobic TiO2-SiO2-composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity", Ceram. Int., 4939, 46 (2020).
21 E. N. Khimich, G. S. Buslaev, A. V. Zdravkov, N. N. Khimich, and M. G. Voronkov, "Polysiloxane structures cross-linked with hydroquinone and phloroglucinol", Russ. J. Appl. Chem., 1410, 81 (2008).
22 D. B. Mahadik, Y. K. Lee, N. K. Chavan, S. A. Mahadik, and H. H. Park, "Monolithic and shrinkage-free hydrophobic silica aerogels via new rapid supercritical extraction process", J. Supercrit. Fluid., 84, 107 (2016).
23 M. H. Stockett and S. B. Nielsen, "Transition energies of benzoquinone anions are immune to symmetry breaking by a single water molecule", Phys. Chem. Chem. Phys., 6996, 18 (2016).
24 J. Guo, B. N. Nguyen, L. Li, M. A. B. Meador, D. A. Scheiman, and M. Cakmak, "Clay reinforced polyimide/silica hybrid aerogel", J. Mater. Chem. A., 7211, 1 (2013).
25 D. B. Mahadik, A. V. Rao, V. G. Parale, M. S. Kavale, P. B. Wagh, S. V. Ingale, and S. C. Gupta, "Effect of surface composition and roughness on the apparent surface free energy of silica aerogel materials", Appl. Phys. Lett., 104104, 99 (2011).
26 D. B. Mahadik, H. N. R. Jung, W. Han, H. H. Cho, and H. H. Park, "Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process", Compos. Sci. Technol., 45, 147 (2017).
27 A. V. Rao, R. R. Kalesh, and G. M. Pajonk, "Hydrophobicity and physical properties of TEOS based silica aerogels using phenyltriethoxysilane as a synthesis component", J. Mater. Sci., 4407, 38 (2003).
28 D. B. Mahadik, A. V. Rao, A. P. Rao, P. B. Wagh, S. V. Ingale, and S. C. Gupta, "Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels", J. Colloid Interface Sci., 298, 356 (2011).   DOI
29 L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen, and C. Y. Su, "A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels", Nat. Commun., 1, 1774 (2013).
30 E. P. Barret, L. G. Joyner, and P. P. Halenda, "The determination of pore volume and area distributions in porous substances", J. Am. Chem. Soc., 373, 73 (1951).
31 G. Zu, K. Kanamori, T. Shimizu, Y. Zhu, A. Maeno, H. Kaji, and K. Nakanishi, "Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators", J. Shen, Chem. Mater., 2759, 30 (2018).
32 D. B. Mahadik, K. Y. Lee, R. V. Ghorpade, and H. H. Park, "Superhydrophobic and compressible silica-polyHIPE covalently bonded porous networks via emulsion templating for oil spill cleanup and recovery", Sci. Rep., 16783, 8 (2018).