• 제목/요약/키워드: Harsh Environments

검색결과 219건 처리시간 0.035초

선박의 해양 부식과 부식방지 장치 (Apparatus on Corrosion Protection and Marine Corrosion of Ship)

  • 김성종
    • 한국표면공학회지
    • /
    • 제44권3호
    • /
    • pp.105-116
    • /
    • 2011
  • Ships and offshore structures are exposed to harsh marine environments, and maintenance and repair are becoming increasingly important to the industry and the economy. The major corrosion phenomenons of metals and alloys in marine environment are pitting corrosion, stress corrosion cracking, crevice corrosion, fatigue corrosion, cavitation-erosion and etc. due to the effect of chloride ions and is quite serious. Methods of protection against corrosion can generally be divided into two groups: anodic protection and cathodic protection. Anodic protection is limited to the passivity characteristics of a material in its environment, while cathodic protection can apply methods such as sacrificial anode cathodic protection and impressed current cathodic protection. Sacrificial anode methods using Al and Zn alloys are widely used for marine structures and vessels intended for use in seawater. Impressed current cathodic protection methods are also widely used in marine environments, but tend to generate problems related to hydrogen embrittlement caused by hydrogen gas generation. Therefore, it is important to the proper maintenance and operation of the various corrosion protection systems for ship in the harsh marine environment.

Photon-counting linear discriminant analysis for face recognition at a distance

  • Yeom, Seok-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권3호
    • /
    • pp.250-255
    • /
    • 2012
  • Face recognition has wide applications in security and surveillance systems as well as in robot vision and machine interfaces. Conventional challenges in face recognition include pose, illumination, and expression, and face recognition at a distance involves additional challenges because long-distance images are often degraded due to poor focusing and motion blurring. This study investigates the effectiveness of applying photon-counting linear discriminant analysis (Pc-LDA) to face recognition in harsh environments. A related technique, Fisher linear discriminant analysis, has been found to be optimal, but it often suffers from the singularity problem because the number of available training images is generally much smaller than the number of pixels. Pc-LDA, on the other hand, realizes the Fisher criterion in high-dimensional space without any dimensionality reduction. Therefore, it provides more invariant solutions to image recognition under distortion and degradation. Two decision rules are employed: one is based on Euclidean distance; the other, on normalized correlation. In the experiments, the asymptotic equivalence of the photon-counting method to the Fisher method is verified with simulated data. Degraded facial images are employed to demonstrate the robustness of the photon-counting classifier in harsh environments. Four types of blurring point spread functions are applied to the test images in order to simulate long-distance acquisition. The results are compared with those of conventional Eigen face and Fisher face methods. The results indicate that Pc-LDA is better than conventional facial recognition techniques.

Grid-based Correlation Localization Method in Mixed Line-of-Sight/Non-Line-of-Sight Environments

  • Wang, Riming;Feng, Jiuchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.87-107
    • /
    • 2015
  • Considering the localization estimation issue in mixed line-of-sight (LOS)/non-LOS(NLOS) environments based on received signal strength (RSS) measurements in wireless sensor networks, a grid-based correlation method based on the relationship between distance and RSS is proposed in this paper. The Maximum-Likelihood (ML) estimator is appended to further improve the localization accuracy. Furthermore, in order to reduce computation load and enhance performance, an improved recursively version with NLOS mitigation is also proposed. The most advantages of the proposed localization algorithm is that, it does not need any prior knowledge of the propagation model parameters and therefore does not need any offline calibration effort to calibrate the model parameters in harsh environments, which makes it more convenient for rapid implementation in practical applications. The simulation and experimental results evidence that the proposed localization algorithm exhibits good localization performance and flexibilities for different devices.

Tightly-Coupled GPS/INS/Ultrasonic-Speedometer/Barometer Integrated Positioning for GPS-Denied Environments

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, Lawoo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권4호
    • /
    • pp.387-395
    • /
    • 2020
  • Accuracy of an integrated Global Positioning System (GPS) / Inertial Navigation System (INS) relies heavily on the visibility of GPS satellites. Especially, its accuracy is dramatically degraded in urban canyon due to signal obstructions due to large structures. In this paper, we propose a new integrated positioning system that effectively combines INS, GPS, ultrasonic sensor, and barometer in GPS-denied environments. In the proposed system, the ultrasonic sensor provides velocity information along the forward direction of moving vehicle. The barometer output provides height information compensated for the pressure variation due to fast vehicle movements. To evaluate the performance of the proposed system, an experiment was carried out by mounting the proposed system on a test car. By the experiment result, it was confirmed that the proposed system bears good potential to maintain positioning accuracy in harsh urban environments.

실시간 응용을 위한 MAP 네트워크 관리에 관한 연구 (A study on the MAP network management for real time application)

  • 이창원;신기명;이강현;김용득
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.332-336
    • /
    • 1991
  • Network management is responsible for gathering information on the usage of the network media by the network devices, ensuring the correct operation of the network, and providing reports. MAP network management must provide the high reliability of the media and signaling method, even in very harsh environments, providing a very low bit error rate and minimum number of retransmission. In this paper, we analysed the framework of OSI management and MAP network management and discussed the implementation method of fault management and remote management mechanism in the Mini-MAP controller developed for IBM-PC.

  • PDF

Quorum Sensing Regulation of Biofilm Formation by Periodontal Pathogens

  • Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • 제43권4호
    • /
    • pp.171-175
    • /
    • 2018
  • Quorum sensing (QS) is a cell density-dependent communication mechanism between bacteria through small signaling molecules. When the number of QS signaling molecules reaches a threshold, they are transported back into the cells or recognized by membrane-bound receptors, triggering gene expression which affects various phenotypes including bioluminescence, virulence, adhesion, and biofilm formation. These phenotypes are beneficial for bacterial survival in harsh environments. This review summarizes the application of QS inhibitors for control of biofilm formation and virulence expression of periodontal pathogens.

Vibration-Robust Attitude and Heading Reference System Using Windowed Measurement Error Covariance

  • Kim, Jong-Myeong;Mok, Sung-Hoon;Leeghim, Henzeh;Lee, Chang-Yull
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.555-564
    • /
    • 2017
  • In this paper, a new technique for attitude and heading reference system (AHRS) using low-cost MEMS sensors of the gyroscope, accelerometer, and magnetometer is addressed particularly in vibration environments. The motion of MEMS sensors interact with the scale factor and cross-coupling errors to produce random errors by the harsh environment. A new adaptive attitude estimation algorithm based on the Kalman filter is developed to overcome these undesirable side effects by analyzing windowed measurement error covariance. The key idea is that performance degradation of accelerometers, for example, due to linear vibrations can be reduced by the proposed measurement error covariance analysis. The computed error covariance is utilized to the measurement covariance of Kalman filters adaptively. Finally, the proposed approach is verified by using numerical simulations and experiments in an acceleration phase and/or vibrating environments.

A study on the impact load acting on an FPSO bow by steep waves

  • Hong, Sam-Kwon;Lew, Jae-Moon;Jung, Dong-Woo;Kim, Hee-Taek;Lee, Dong-Yeon;Seo, Jong-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 2017
  • Various offshore structures such as FPSO, FSO, Semi-submersible, TLP and Spar are operated to develop offshore oil and gas fields. Most of the offshore structures shall be operated over 20 years under the harsh environments at sites so that the offshore structures should be designed to endure the harsh environments. In this study, the effect of the impact load (so called slapping load) by the steep waves acting on the FPSO bow is investigated through the model test. For measurement of the impact pressures on the frontal area, a bow-shaped panel was fabricated, and installed the pressure sensors on the bow starboard side of the model FPSO. During the model test campaign, the impact load was investigated using the steep waves with $Hs/{\lambda}$ greater than 1/16 of the representative wave condition. Consequently, it is confirmed through the model test that the impact loads acting on the FPSO bow are significantly increased with the steep waves ($Hs/{\lambda}$ > 1/16) than the representative wave conditions of a maximum significant wave height and a pitch forcing period. Therefore, for safe design of North Sea FPSO, it is necessary to consider the steep waves in addition to the representative wave conditions and to be applied as proper structural load. Also, the effect of random seeds in irregular waves should be considered to build the safe FPSO.

Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks

  • Kim, Daehyun;Ohr, Sewon
    • Journal of Ecology and Environment
    • /
    • 제44권3호
    • /
    • pp.162-177
    • /
    • 2020
  • Background: Ecologists have achieved much progress in the study of mechanisms that maintain species coexistence and diversity. In this paper, we reviewed a wide range of past research related to these topics, focusing on five theoretical bodies: (1) coexistence by niche differentiation, (2) coexistence without niche differentiation, (3) coexistence along environmental stress gradients, (4) coexistence under non-equilibrium versus equilibrium conditions, and (5) modern perspectives. Results: From the review, we identified that there are few models that can be generally and confidently applicable to different ecological systems. This problem arises mainly because most theories have not been substantiated by enough empirical research based on field data to test various coexistence hypotheses at different spatial scales. We also found that little is still known about the mechanisms of species coexistence under harsh environmental conditions. This is because most previous models treat disturbance as a key factor shaping community structure, but they do not explicitly deal with stressful systems with non-lethal conditions. We evaluated the mainstream ideas of niche differentiation and stochasticity for the coexistence of plant species across salt marsh creeks in southwestern Denmark. The results showed that diversity indices, such as Shannon-Wiener diversity, richness, and evenness, decreased with increasing surface elevation and increased with increasing niche overlap and niche breadth. The two niche parameters linearly decreased with increasing elevation. These findings imply a substantial influence of an equalizing mechanism that reduces differences in relative fitness among species in the highly stressful environments of the marsh. We propose that species evenness increases under very harsh conditions if the associated stress is not lethal. Finally, we present a conceptual model of patterns related to the level of environmental stress and niche characteristics along a microhabitat gradient (i.e., surface elevation). Conclusions: The ecology of stressful systems with non-lethal conditions will be increasingly important as ongoing global-scale climate change extends the period of chronic stresses that are not necessarily fatal to inhabiting plants. We recommend that more ecologists continue this line of research.

초고온 시스템용 SiCN 마이크로 구조물 제작 (Fabrication SiCN micro structures for extreme high temperature systems)

  • 판 투이 탁;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.216-216
    • /
    • 2009
  • This paper describes a novel processing technique for the fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for extreme microelectromechanical system (MEMS) applications. A polydimethylsiloxane (PDMS) mold was formed on an SU-8 pattern using a standard UV photolithographic process. Next, the liquid precursor, polysilazane, was injected into the PDMS mold to fabricate free-standing SiCN microstructures. Finally, the solid polymer SiCN microstructure was cross-linked using hot isostatic pressure at $400^{\circ}C$ and 205 bar. The optimal pyrolysis and annealing conditions to form a ceramic microstructure capable of withstanding temperatures over $1400^{\circ}C$ were determined. Using the optimal process conditions, the fabricated SiCN ceramic microstructure possessed excellent characteristics includingshear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$, and BDV (1.2 kV, minimum). Since the fabricated ceramic SiCN microstructure has improved electrical and physical characteristics compared to bulk Si wafers, it may be applied to harsh environments and high-power MEMS applications such as heat exchangers and combustion chambers.

  • PDF