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Quorum sensing (QS) is a cell density-dependent 
communication mechanism between bacteria through small 
signaling molecules. When the number of QS signaling 
molecules reaches a threshold, they are transported back into 
the cells or recognized by membrane-bound receptors, 
triggering gene expression which affects various phenotypes 
including bioluminescence, virulence, adhesion, and biofilm 
formation. These phenotypes are beneficial for bacterial 
survival in harsh environments. This review summarizes the 
application of QS inhibitors for control of biofilm formation 
and virulence expression of periodontal pathogens. 
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Quorum sensing 

Quorum sensing (QS) is mediated by a cell-to-cell signaling 

system composed of small signaling molecules secreted by 

bacteria. It is dependent on cell density and was first discovered 

in Vibrio fischeri, a Gram-negative bacterium [1,2]. Bacteria 

secrete signaling molecules that, at an extracellular threshold 

level, reenter the cells or are sensed by the membrane-bound 

receptors, resulting in signal transduction to induce a variety 

of genes for virulence factors, bioluminescence, and biofilm 

formation [3]. There are several types of QS molecules. Acyl 

homoserine lactones are produced from Gram-negative bacteria 

and oligopeptides are produced from Gram-positive bacteria. 

Autoinducer-2 (AI-2) can be produced by both Gram-negative 

and Gram-positive bacteria [3]. Quinolones, hydroxyl ketones, 

bradyoxetin, and AI-3 have been identified in several specific 

bacterial species as QS signaling molecules [4-7]. QS can be 

a target to combat bacterial virulence. Therefore, QS inhibition 

has been suggested as an attractive alternative for antimicrobial 

strategies [8]. 

AI-2-dependent QS in periodontal pathogens

Periodontitis is initiated by bacteria in subgingival biofilms 

composed of mostly Gram-negative anaerobes. AI-2 is involved 

in universal intergeneric signaling and plays an important role 

in biofilm formation involving multiple bacterial species, such 

as dental biofilms [9]. A high level of AI-2 was detected in 

culture supernatants of Fusobacterium nucleatum (F. nucleatum), 

Porphyromonas gingivalis (P. gingivalis), and Prevotella 

intermedia (P. intermedia) [10,11]. In Aggregatibacter 

actinomycetemcomitans (A. actinomycetemcomitans), the AI-2 

level was maximal in the mid-exponential phase and decreased 

significantly at the late log phase [12]. AI-2-dependent QS was 
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observed in mutualistic dual species biofilm formation between 

Streptococcus oralis (S. oralis) and Actinomyces naeslundii, oral 

commensals [13]. This dual-species biofilm formation was 

dependent on the concentration of AI-2. Optimal concentration 

was 100-fold lower than that required to induce bioluminescence 

from Vibrio harveyi(V. harveyi), suggesting that the bacteria 

can respond to different concentrations of AI-2. Oral commensals 

secrete and respond to very low AI-2 concentrations (10 - 100 

pM), whereas periodontal pathogens secrete and respond to high 

concentrations of AI-2 (1-10 nM) [9]. In developing subgingival 

biofilm, accumulation of AI-2 enhances the communication 

among transition bacterial species including F. nucleatum, 

leading to biofilm growth of periodontal pathogens. F. nucleatum 

plays a critical role in the development of subgingival biofilm 

by connecting early colonizing commensals and late pathogenic 

colonizers including P. gingivalis, Treponema denticola (T. 

denticola), and Tannerella forsythia (T. forsythia) [9]. Although 

these periodontal pathogens are Gram-negative bacteria, they 

do not produce acyl homoserine lactones.

AI-2 is formed from spontaneous cyclization of 4,5- 

dihydroxy-2,3-pentanedione, which is the product of the 

catabolism of S-adenosylhomocysteine with the LuxS enzyme. 

This type of QS was first discovered in the marine bacterium 

V. harveyi [14]. Even in bacteria that do not produce AI-2 

synthase, AI-2 signal transduction can occur, suggesting both 

intergenic and intragenic signaling. A luxS homolog gene was 

identified in P. gingivalis [10,15], A. actinomycetemcomitans 

[12], Campylobacter jejuni [16], Eikenella corrodens [17], and 

oral streptococci including Streptococcus gordonii (S. gordonii) 

[18] and Streptococcus mutans [19,20]. 

AI-2 is recognized by the two-component signal transduction 

system [21]. Three types of AI-2 receptors have been identified: 

LuxP in V. harveyi [14,22], LsrB in Salmonella typhimurium 

and A. actinomycetemcomitans [23-25], and RbsB in A. 

actinomycetemcomitans [26]. The periplasmic proteins LsrB 

and RbsB in A. actinomycetemcomitans are similar to LuxP 

[24,25]. RbsB exhibited a higher affinity to AI-2 than did LsrB 

[24,26]. In A. actinomycetemcomitans, QseBC homolog genes 

have been identified [27] and QseBC genes are known to be 

involved in a two-component system in E. coli to regulate 

biofilm formation [28]. In A. actinomycetemcomitans, AI-2 

induced the QseBC two-component system and inactivation of 

QseC, a sensor histidine kinase, resulting in reduced biofilm 

formation and significantly less bone resorption in a mouse 

model compared to the wild type [27]. QseC resides 

downstream of LsrB and RbsB, AI-2 receptor proteins. 

Recently, D-galactose binding protein that exhibited high 

sequence similarity with RbsB has been identified in F. 

nucleatum as a putative AI-2 receptor [29]. Since F. nucleatum 

can coaggregate with both early and late colonizers, its AI-2 

plays a critical role in the pathogenic biofilm development. 

Semi-purified AI-2 of F. nucleatum induced the biofilm growth 

of single and dual species and coaggregation between F. 

nucleatum and each species of the ‘red complex’ composed of 

P. gingivalis, T. denticola, and T. forsythia [11]. It induced 

gene expression of the adhesion molecules of the bacteria: 

fadA of F. nucleatum, gingipain rgpA of P. gingivalis, msp 

of T. denticola, and bspA of T. forsythia [11]. AI-2 of A. 

actinomycetemcomitans induced leukotoxin and iron transport 

protein AfuA expression [12]. LuxS- and autoinducer-2 receptor 

deficient strains of A. actinomycetemcomitans formed a mature 

biofilm with significantly lower total biomass and biofilm depth 

compared with the wild-type strain [24,25]. Complementation 

experiments showed that A. actinomycetemcomitans AI-2 was 

able to complement the luxS mutation of P. gingivalis by 

increasing uvrB expression and blocking hasF expression. P. 

gingivalis uvrB and hasF have been demonstrated to be 

differently regulated by P. gingivalis LuxS system [12]. LuxS 

inactivation in P. gingivalis led to upregulation of a hemin 

acquisition protein and arginine-specific protease, whereas it 

resulted in reduced expression of a hemin-regulated protein and 

an excinuclease [15]. A P. gingivalis luxS mutant produced 45% 

less Rgp and 30% Kgp activity relative to the wild type [30].

QS inhibitors for control of biofilm formation 
of periodontal pathogens 

QS inhibition can be a way to prevent bacterial biofilm 

formation and virulence expression without affecting bacterial 

growth or death. This inhibition is accomplished by disruption 

of AI synthase, inactivation of QS signaling molecules, and 

antagonization of QS receptors [31-34]. Since AI-2 plays a 

critical role in biofilm development of periodontal pathogens 

and virulence expression, AI-2 antagonists have the potential 

to prevent periodontitis. A furanone compound, (5Z)-4-bromo- 

5-(bromomethylene)-2(5H)-furanone and D-ribose exhibited an 

inhibitory effect on biofilm formation, coaggregation, and the 

expression of the adhesion molecules of F. nucleatum, P. 

gingivalis, T. denticola, and T. forsythia mediated by F. 
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nucleatum AI-2 [11]. AI-2 and D-ribose bind to the same site 

of RbsB [26], suggesting that D-ribose is a QSI inhibitor. 

D-Ribose reduced biofilm growth of A. actinomycetemcomitans 

[25]. F. nucleatum AI-2 enhanced biofilm growth of S. gordonii 

and attachment of F. nucleatum on preformed biofilms of S. 

gordonii [35]. However, it reduced biofilm growth of S. oralis 

and attachment of F. nucleatum on preformed biofilms of S. 

oralis. These results indicate that early colonizing streptococci 

may affect the accumulation of F. nucleatum to accelerate the 

binding of periodontal pathogens. D-Galactose has been shown 

to inhibit biofilm formation of periodontal pathogens. 

D-Galactose inhibited F. nucleatum AI-2 activity and biofilm 

growth of F. nucleatum, P. gingivalis, and T. forsythia induced 

by F. nucleatum AI-2 [29]. New synthetic compounds bicyclic 

brominated furanones, 3-(dibromomethylene)isobenzofuran-1 

(3H)-one derivatives, inhibited F. nucleatum AI-2 activity and 

biofilm formation of F. nucleatum, P. gingivalis, and T. 

forsythia induced by F. nucleatum AI-2 without affecting 

bacterial growth [36]. These bicyclic brominated furanones 

significantly decreased biomass and depth of biofilms of the 

bacteria at concentrations between 0.002 and 2 μM. The 

compounds did not affect the cell viability of a human 

monocytic cell line THP-1 cells, human gingival fibroblasts, 

or human keratinocyte cell line HOK-16B cells. Moreover, it 

did not induce an inflammatory response in these cells. In vivo 

experiments using mice showed that treatment with the furanone 

compound and D-ribose significantly reduced the distance from 

the alveolar bone crest to the cement-enamel junction, when 

mice were orally inoculated with P. gingivalis [37]. In mice 

models coinfected with P. gingivalis and F. nucleatum, the 

furanone compound and D-ribose significantly reduced alveolar 

bone loss and increased bone volume compared to the control 

group [38]. Taken together, these findings indicate that AI-2 

QS inhibitors have the potential to inhibit biofilm formation 

and virulence of periodontal pathogens. 

Conclusions

AI-2 is a universal QS signaling molecule that mediates intra- 

and intercellular communication in bacteria and plays an 

important role in biofilm development of periodontal pathogens. 

Limited studies showed that AI-2 QS inhibitors are able to 

reduce biofilm formation and virulence of periodontal 

pathogens, suggesting that they may be used as preventive 

agents of periodontitis without concerns about drug resistance. 

More intensive studies can accelerate the development and 

application of AI-2 QS inhibitors to prevent periodontitis in 

early phases. 
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