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Abstract 
 

Considering the localization estimation issue in mixed line-of-sight (LOS)/non-LOS(NLOS) 
environments based on received signal strength (RSS) measurements in wireless sensor 
networks, a grid-based correlation method based on the relationship between  distance and 
RSS is proposed in this paper. The Maximum-Likelihood (ML) estimator is appended to 
further improve the localization accuracy. Furthermore, in order to reduce computation load 
and enhance performance, an improved recursively version with NLOS mitigation is also 
proposed. The most advantages of the proposed localization algorithm is that, it does not need 
any prior knowledge of the propagation model parameters and therefore does not need any 
offline calibration effort to calibrate the model parameters in harsh environments, which 
makes it more convenient for rapid implementation in practical applications. The simulation 
and experimental results evidence that the proposed localization algorithm exhibits good 
localization performance and flexibilities for different devices. 
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1. Introduction 

LOcation estimation via received signal strength (RSS) has attracted much attention for its 
low hardware cost. Localization via RSS is the best choice for some applications where the 
localization error in meter is accepted, e.g. vehicle localization in parking lot. There are 
numerous articles on localization technologies based on RSS measurements, which can be 
broadly categorized into two classes: propagation model-based and empirical model-based. 
Although empirical model-based method generally have higher localization accuracy than the 
former method,  it needs a tedious offline training phase.  

In this paper, we focus on the propagation model-based method based on RSS 
measurements. A new localization method based on recursive grid-based correlation method 
is proposed. The performance of the proposed method is validated in simulations and 
experiments.   

The remainder of this paper is organized as follows. Section 2 reviews the related works and 
presents the main contributions in this paper. Section 3 addresses the RSS signal model, the 
Cramer-Rao Lower Bound(CRLB) for the ML estimator and the original correlation method. 
Section 4 describes the proposed improved correlation version with NLOS mitigation. Section 
5 presents the framework of the proposed localization algorithm. Section 6 shows the 
simulation and experimental results and analysis. 

2. Related Works and Main Contributions 

The least squares estimator and the maximum-likelihood estimator are widely used in 
propagation model-based localization problems. In [1], the nonlinear equations constructed 
from the noisy range measurements are converted to the weighted least squares problem by 
eliminating the common range variable by subtracting the reference equation. Recently, an 
optimal reference equation selection method is proposed in [2], in which several selection 
methods are proposed and compared. Further, the authors in [3] introduce a range variable 
instead of subtracting the reference equation, and then exploit a linearization approach to 
devise two linear least squares (LLS) estimators for RSS-based positioning. Another alteration 
of substraction is  the iterative least squares method presented in [4].  

In the presence of NLOS bias, bias mitigation helps to improve localization accuracy. In [5], 
a ‘balancing’ bias variable is introduced for simplification. Furthermore,  given a good initial 
point and the Taylor series expansion technology[6,7], the highly nonlinear joint estimation 
problem of location and biases can be reduced to a linear least squares issue, which called 
TS-LQP. Although TS-LQP will result in some accuracy degradation than the sequential 
quadratic programming algorithm,  TS-LQP has much less computation complexity. 

In general, the performance of linear least squares estimators will not be comparable to the 
ML estimators in noisy environments [8]. The ML cost function based on the log-path-loss 
propagation model [9] is non-convex and highly nonlinear. It is easy to trap in local minima 
and  hard to reach the global minima. Therefore, a good initial point is very important for the 
ML estimator. There are several methods to provide the initial point, i.e. least squares, linear 
least squares etc. In [10], a SDP relaxation convex problem is formulated, and the solution is 
served as the initial point for the appending ML estimator (called SDP-ML). Simulations 
demonstrate that SDP-ML exhibits excellent perfomance and performs closely to the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 1, January 2015                                         89 

corresponding CRLB in RSS-based wireless localization.    
In addition to the good initial point, calibration on model parameters is another effective 

way to improve localization accuracy. In [11], a self-calibrating RSS ranging method is 
presented, where the propagation model parameters are self-calibrated by online RSS 
measurements between the known-location ANs. In  [12], an offline calibration is performed 
by fitting the RSS measurements collected in experiments. Compared to the above calibration 
methods, the proposed correlation localization algorithm in this paper does not depend on the 
propagation model parameters, therefore it dose not need any offline/online calibration effort.  

Moreover, geometric layout of anchor nodes can significantly affect the potential 
localization accuracy. In [13], a metric for optimal sensor placement is proposed, and the 
optimal sensor-target localization geometries is analyzed completely for homogeneous sensor 
networks, including the geometry of range-only based localization, the geometry of 
time-of-arrival localization and the geometry of bearing-only based localization etc. The 
authors in [14] focus on the optimal geometries for heterogeneous sensor networks. It can be 
concluded from [13-14] that the localization region should be inside the convex hull formed by 
the uniformly and randomly deployed anchor nodes (ANs) in order to reach better localization 
performance. This will be evidenced in the experiments in Section 6.   

Generally, mixed line-of-sight (LOS) /non-line-of-sight (NLOS) is common in application 
environments, which leads to severe accuracy degradation. Identification and mitigation are 
widely used to deal with NLOS. In [15], the authors investigated NLOS identification by 
employing the statistical decision theory. In [16], the mixture distribution is utilized to 
characterize the non-Gaussian and heavy-tailed nature of the measurements error in mixed 
LOS/NLOS environments. However, although many algorithmes have been proposed to 
identify and mitigate NLOS [17-20], it is still hard to model the mixed LOS/NLOS 
characteristics exactly and mitigate NLOS effectively by now, due to the unknown prior 
knowledge of LOS/NLOS status and statistical characteristics.  

In [21], a correlation localization method is presented. However, it utilizes the correlation 
between online RSS matrix and offline radio-map, thus the offline training phase is 
unavoidable. Different from [21], the correlation method proposed in this paper utilizes the 
correlation between online RSS measurements and distance, thus the tedious offline traning 
phase is avoided. Compared to the related works mentioned above, the proposed algorithm in 
this paper does not need to select the initial point, and does not depend on the propogation 
model parameters, therefore any offline/online calibration and training effort is avoided, 
which makes it more suitable for rapid implementation in applications.  

The main contributions of this paper are: (1) Propose an innovational method in utilizing the 
correlation between online RSS measurements and distance to locate the target. The proposed 
correlation method bypass the difficulty to know the path loss exponent in advance in 
localization. As soon as online RSS measurements are received, the location estimation of the 
target can be obtained immediately, no matter how the path loss exponent changes due to the 
variations in environments. (2) Present a simple and effective NLOS mitigation method for 
RSS-based wireless localization in mixed LOS/NLOS environments. (3) Put forward some 
important guidlines on the ANs deployment to improve localization accuracy, which are 
useful for network implementation in applications based on RSS measurements.    

3. Signal Model and Correlation Method 

3.1 Signal Model and ML Estimator 
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In the localization planer Ω , we consider a system consisting of N  stationary anchors nodes 
(ANs) with known locations [ ]Taai ii

yx ,=a , Ni ,,2,1 =  and a target node (TN) with unknown 

location [ ]Tyx,=θ , which is to be estimated based on RSS. RSS measurements are received 
by the TN from M hearable ANs, where NM ⊆ . A simple illustration of the mixed 
LOS/NLOS localization scenario is illustrated in Fig. 1. 

 
Fig. 1. A simple example of localization in mixed LOS/NLOS environments. 

 
The signal strength irP ,  measured by the TN from the i th reachable AN can be modeled by 

the log-path-loss model as follows[9].  
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where Mi ,,2,1 = , tP  is the transmission power and 0P  is the signal strength at the 
reference distance 0d , generally, 10 =d m; β  is the path loss exponent (generally ranging 
from 2 to 7 [22-23]); in is the Gaussian random variable representing the shadowing effect in 
the environments and ( )2,0~ σNni . In this paper, rP , tP  and 0P  are in dB scale. tP  and 0P are 
known as identical constant for all ANs. For simplicity, we assume 0=tP dB. 

Suppose the observation vector is [ ]TMrrrr PPP ,2,1, ,,, =P , irP ,  follows the Gaussian 
distribution. Therefore, under the independence assumption of irP , ,  the joint conditional PDF 
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Obviously, the ML estimator of θ  is   
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The root mean square error (RMSE) of θ̂  is lower bounded by the Cramer-Rao lower bound 
(CRLB) [24]  
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where the Fisher Information matrix F  is defined as 
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It serves as a performance benchmark for location estimation in Section 6.  
 

3.2 Original Grid-based Correlation Method 

Given an arbitrary location [ ]Tggg yx ,=θ ,  suppose the corresponding distance vector and 

observation vector are  [ ]TMgggg ddd ,2,1, ,,, =d  and [ ]TMrrrr gggg
PPP ,2,1, ,,, =P  respectively, 

where igd ,  is the distance between gθ  and the i th AN. Then the correlation coefficient 
gθ

γ  
between gd  and 

gr
P  is defined as 
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and 1=

gθ
γ  in ideal environments without noise. 

Suppose the length and width of the localization region Ω  are L m and  W m respectively, 
and Ω  is divided into grids with length s . Further denote the center coordinate of each grid as 

[ ]Tcck kk
yx ,=c , Kk ,,2,1 = , and  2sLWK = . Then for each kc , the corresponding 

correlation coefficient 
kcγ  can be calculated from (6) , given the received RSS observation 

vector rP . Thus   
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where ( )•δ  is the Dirac function. Therefore, the location estimation of the TN is obtained by 
 

    ( )rp
k

Pθθ
c

|maxarg~ =             (8) 

 
A simple illustration  is depicted in Fig. 2. it can be observed that four ANs are located at 

four corners respectively, the TN is located at [4,2]. Numbers in each grid are the correlation 
coefficients accordingly. According to (8), the location estimation of the TN  is [5,1], with 
parameters 2=β , 22 4.3=σ . 
Remark1: The location estimation obtained by the correlation method is a coarse estimation, 
and the corresponding localization error decreases as the grid length s  gets smaller.  
Remark2: The correlation coefficient cannot provide high resolution with noisy RSS 
measurements. The location estimation obtained by the correlation method are more suitable 
to serve as good  initial point for the ML estimator than to be the final location estimation.  
Remark3: Computation load of the grid-based correlation method increases quickly as the grid 
length gets smaller. Therefore, an improved grid-based correlation method is proposed in 
Section 4, which has much less computation cost and more steady estimation output. 
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Fig. 2. A simple localization example of the original correlation method 

 

4. Improved Correlation Method and NLOS Mitigation 

4.1 Recursively Grid-based  Correlation Method 
To reduce the computation cost is equivalent to reduce the amount of grids. In order to reduce 
the amount of grids, a large grid length is set in initialization, and then reduced by half in each  
iteration subsequently. Also, the high probability region is reduced by half in  each iteration. 
The method to reduce by half in each iteration is inspired from the binary search, which owes 
good performance and fast speed in searching. Note that the grid with largest correlation 
coefficient maybe not the closest grid to the true location of the target, due to noisy RSS 
measurements and NLOS bias. Therefore, the two-step strategy is not adopted, which select 
the grid with largest coefficient first and then refine in it later.  

Suppose the initial high probability region Ω=0R , with the initial length LL =0  and the 
initial width WW =0 , then the i th iteration is briefly described as follows.  

1) Original grid-based correlation operation:  divide iR  into grids by grid length is ,  then 
calculates the correlation coefficient 

kcγ by (6) for each grid. Therefore we have a coefficient 

vector [ ]T
Kcccγ γγγ ,,,

21
= , where the index K  indicates that there are totally K grids, 

 2
iii sWLK = .     

2) Update high probability region: Sort γ  in the order of descendent. Take the middle 
component of  the sorted coefficient vector as the threshold thp , then we have a subset of γ , 
denoted as { }thsub p

kk
>= ccγ γγ | . Consequently we have the corresponding coordinate subset 

{ }subk k
γc c ∈= γφ | . Then the corresponding grids with center φ∈kc  establish the high 

probability region 1+iR . Obviously there exist 
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where γ  denotes the cardinality of the set γ , and ( )•S  is the area operation. Furthermore, 1+iR  
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The sides length of 1+iR can be  updated by 
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3) Update grid length: The grid length is updated by 21 ii ss =+ . If min1 ssi <+ , the routine exit 
iteration and return  subγ , φ , else the routine go back to Step 1). Note that mins is the minimal 
step depended on applications. It is set 5.0min =s m in the performance evaluations.   

The comparison of reduction in computation load is showed in Fig. 3. Scene1 is a square 
region in Lab, 30 =s m, 600 ==WL m. Scene2 is a square region in simulation, 70 =s m, 

7000 ==WL m. Scene3 is a rectangle region in the central bus station, 90 =s m, 1000 =L m, 
450 =W m.  For all scenes, 5.0min =s m.  It can be seen that the number of grids in the improved 

version is nearly one grade lower than that in the original version. 

 
 

Fig. 3. Comparison of reduction in computation load  
 

4.2 The Location Estimation 
In order to improve the localization performance in harsh environments, a weighted location 
estimation method is proposed. Remember that subγ , φ  are obtained in the previous routine, 
thus   
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where ∑ subγ  add up all elements of subγ  for normalization.  
Performance comparison of (8) and (12) are presented in Table 1. In the performance 

evaluations, there are totally 12 TN positions randomly and uniformly selected inside the 
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6m × 6m region with four ANs at four corners respectively, and 50 independent localizations 
are performed at each position. The NLOS bias is assumed  to follow the uniform distribution 
( )max,0 BU , 10max =B dB [25]. 
 

Table 1. Mean and variance of localization error in the origin and improved method 
 

σ  Mean Variance 
NLOS  Mean Variance 

Org Imp Org Imp Org Imp Org Imp 
1 0.9336 1.0675 0.3607 0.0423 1 1.2493 1.1775 0.6543 0.3177 
2 0.9177 1.0809 0.4092 0.1240 2 1.3995 1.2845 0.7236 0.4188 
3 0.9379 1.0862 0.4355 0.1528 3 1.4290 1.3018 0.7357 0.4393 
4 0.9966 1.0960 0.5101 0.1823 4 1.3993 1.2665 0.7497 0.3989 
 
The original method in (8) and the improved method in (12) are denoted as “Org” and “Imp”  

in Table 1, respectively. The left numbering 1-4 indicate σ =1,2,3,4 respectively. The right 
numbering 1-4 indicate there are 1,2,3,4 ANs in NLOS respectively. The mean of localization 
error is calculated by the root mean square error (RMSE) in (4). It can be seen that the mean of 
localization errors in (8) and (12) differ little with each other as σ  or NLOS  increases. 
Furthermore, they are both steady, which indicate that the correlation method is not sensitive 
to measurement noise and NLOS bias. Moreover, the variance of localization error in (12) is 
much less than that in (8), thus (12) is more acceptable for location estimation.  

4.3 NLOS Mitigation 
Under NLOS scenarios, since the direct sight paths between the TN and the ANs are blocked 
by the obstacles, the radio power attenuation are more severe than that under LOS scenarios, 
thus irP , ( the absolute value of RSS) gets larger in NLOS. Note that the RSS measurements 

obtained by Zigbee chip CC2530 are positive values(equivalent to irP , ),  and 0=tP dB, then 
from (1) have  
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where ( )•E  means expectation operation. As mentioned above, irP ,  gets larger in NLOS, 
therefore β  increases under NLOS situations. For example, Fig. 4 displays the RSS 
measurements received by the TN from the 25th AN in the experiments in the central bus 
station. There was a bus passing by the TN when observing the first half sequence of RSS. 
Obviously, 25,rP  gets larger in the first half sequence in Fig. 4. 

Further denote 
NLOSirP ,  and 

LOSirP ,  as the mean value of irP ,  in NLOS and LOS 

respectively. As discussed before, 
NLOSirP ,  is larger than 
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Fig. 4. An example of RSS measurements obtained in the central bus station. 

 
Therefore, under NLOS scenarios, the path loss model can be re-written as 
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Since the statistics characteristics of irP ,∆  in experiments are complicated and varying, it is 
hard to be exactly modeled. For simplicity but not loss generality, the uniform distribution is 
used to approximately model the NLOS bias irP ,∆  in simulations.  

Based on the above analysis, a simple and effective method to reduce the effect of NLOS is 
proposed in this section, which requires no prior knowledge of NLOS status and statistics 
characteristics. The idea is as follows. Given the coarse location estimation θ~  obtained by the 
correlation method, the path loss exponent iβ

~  can be calculated by (13). As discussed before, 
it is reasonable to confirm that the AN with high value of iβ

~  may be with high probability of 
NLOS occurrence. Therefore, the main idea of the proposed mitigation method is to subtract 
the NLOS bias irP ,∆  from the RSS measurements received from the AN with high iβ

~ . Since 

irP ,∆  is unknown, it needs to be estimated. However, it is hard to estimate individual NLOS 
bias for each AN, due to no NLOS identification part. Therefore, a “balancing” bias variable is 
introduced for simplification, which denoted as comP  in Algorithm 1.    

Generally, in the proposed mitigation method, large comP  appears on the extreme outliers of 
the path loss exponents. In LOS scenarios, there are few extreme outliers in the path loss 
exponents. Therefore, the additional error introduced by subtracting the NLOS bias comP  is 
small.  

An example in Lab experiments in LOS is showed in Table 2. It can be seen that ( )2SPcom  
are small compared to the corresponding irP , , thus have small impact on the appending ML 
estimator. The additional error introduced in the location estimation is 0.07m in this example. 
However, due to no identification part, the additional error can’t be avoided. This is the 
disadvantage of this method. 
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Algorithm 1. The NLOS mitigation method 
 

Input: Received RSS vector rP , known constant 0P , coarse estimation θ~  

Output: Mitigated RSS vector rP~  

1) Compute β~ = ( ) ( )( )dP ~10log*100 −− Pr  , where iid aθ −=
~~

, 

( )Mβββ
~,,~,~~

21 =β .  

2) Calculate residual ( )βββΔ ~~~ mean−=   

3) Find the set of ANs with positive residual ( )0~
1 >= βΔfindS  

4) Calculate compensation vector  
         ( )( ) ( )( ) ( )dββP ~log*~~*10 1010 meanSmeanPcom −−=  

     where ( )1
~ Sβ  means  the components of  β~  whose indices are in 1S   

5) Find the set of ANs to be mitigated ( )( )( )( )0~~
12 >−= SmeanfindS ββ           

6) Mitigation for ANs in 2S , calculate ( ) ( ) ( )222 SSS comrr PPP −= , where ( )2SrP  

means the components of rP  whose indices are in 2S . Return rr PP =
~ .  

      
Table 2. An example in Lab experiments 

 

ANs numbering 
irP ,  iβ

~  1S  2S  ( )2SPcom  

1 52.75 3.06    
2 49.00 3.20    
3 54.27 3.53 •    
4 45.18 3.11    
5 52.42 3.58 •    
6 48.00 3.78 •  •  1.07 
7 55.39 3.71 •  •  1.59 
8 49.00 3.20    

 

5. The Grid-based Correlation Location Estimation Algorithm 

5.1 Framework of The Algorithm 
The proposed improved correlation method in Section 4.1 is denoted as CORR. By appending 
ML estimator to CORR, we get CORR-ML. The location estimation obtained by CORR 
provides a good initial point for the appending ML estimator, which improve the localization 
performance further. Moreover, the NLOS mitigation method helps to reduce the effect of 
NLOS bias, and enhance the localization accuracy further. The framework of CORR-ML is 
showed in Algorithm 2.   
 

Algorithm 2.  Grid-based correlation location estimation algorithm 
Input:   received RSS vector rP ,  ANs location vector a , Region sides length L and width W ,  

minimum grid length mins  

Output:  Location estimation θ̂  of the TN 
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Step 1 – Initialization 
      Set the iteration index 0=i , sides length LLi = and width WWi = , grid length 

( ) mWLs iii ,max= , where m  is a constant,  and depended on applications. 
Step 2 – Iteration 

– Divide grids with length is  in the location region 
– Compute distance vector 

kcd  for each grid center kc  
– Calculate correlation coefficient by (6) for each grid, and sort the coefficient vector. 
– Update  the high probability region by (9) and (10), sides length by (11) 

Step 3 – Convergence check 
– If  ( ) min2 ssi > , set ( )21 ii ss =+ ,  set 1+= ii , return to Step 2 

– Otherwise, compute location estimation θ~  by (12), then go to Step 4 
Step 4 –  NLOS mitigation 
      Execute the NLOS mitigation method  in Algorithm 1, go to Step 5 
Step 5 –  ML estimation 
      Taken θ~  as the initial point, execute ML estimation based on (3). The MLE estimation θ̂  is the 
final location estimation of the TN. 

5.2 Complexity Analysis 

The complexity of SDP is commonly approximated by ( )( )42/1 MMOO  [26], and the 
complexity of MLE is ( )3MKO GN , where GNK  is the iterations needed in Gauss-Newton 
method[27]. Since SDP is appended by MLE in SDP-ML[10], the complexity of SDP-ML is 
approximated by ( )( )342/1 MKMMOO GN+ . Besides, LLS[3] and TS-LQP[5] are single loop 
algorithms, the complexities of LLS and TS-LQP are ( )MO .   
In the proposed correlation method, suppose the initial grid length is 0s , then the initial 

number of grids is 2
0sLW , where L  and W  are the length and width of the localization 

region Ω  respectively. According to the proposed method, the high probability region and the 
grid length are reduced by half in each iteration. Therefore, the grid length and the number of 
grids in the i th iteration are is 20  and 2

02 sLWi  respectively. Consider the stop condition 
5.020 ≤= κ

κ ss , thus there have  02log1 s+≥κ  iterations and ( ) 2
0

1 12 sLW−+κ  grids in total.  
Because each grid corresponding to a correlation coefficient, and the complexity of calculating 
the correlation coefficient is ( )MO , then the complexity of CORR is ( )( )( )MsLWO 2

0
1 12 −+κ . 

Since CORR is appended by MLE in CORR-ML, the complexity of CORR-ML is 
( )( )( )32

0
1 12 MKMsLWO GN+−+κ .  

The summary of complexity and average running-time in the mentioned Scene1-3 in Fig. 3 
are shown in Table 3. Obviously, the cost of CORR-ML is smaller than SDP-ML.   

 
Table 3. The summary of complexity and average running time 

 
Method 

 
Cost    

Time (s) 
Scene1 Scene2 Scene3 

LLS ( )MO  4.56e-4 6.16e-4 6.06e-4 
TS-LQP ( )MO  2.67e-4 5.33e-4 4.08e-4 

CORR-ML ( )( )( )32
0

1 12 MKMsLWO GN+−+κ
 

0.04 0.87 0.75 

SDP-ML ( )( )342/1 MKMMOO GN+  
0.67 1.21 1.19 



98                   Wang et al.:Grid-based Correlation Localization Method in Mixed Line-of-sight/Non-line-of-sight Environments 

6. Simulation and Experimental Results and Analysis 

The root mean square error (RMSE) of the location estimation θ̂  has been defined in (4). 
Now further define the average root mean square error (aRMSE)  as      

 

( ) ( ) ( )( )∑∑
==

−+−=




 −=

J

i
iiii

J

i
ii yyxxE

J
E

J
aRMSE

1

22

1

2
ˆˆ1ˆ1ˆ θθθ              (15) 

 
where J  is the number of TN positions. The performance is evaluated using aRMSE.  

LLS[3], TS-LQP[5] and SDP-ML[10] are compared in simulation and experiments. The 
proposed improved correlation method in Section 4.1 is denoted as CORR. CORR-ML is the 
proposed localization algorithm in Section 5.1. For fair comparison, the coarse location 
estimation θ~  obtain by CORR also serves as the initial point for TS-LQP.  

The simulations are done via MATLAB. MLE is solved by MATLAB function lsqnonlin,  
SDP is solved by CVX toolbox[28]. In experiments, all RSS measurements are relayed to the 
fusion center via Zigbee wireless network, and saved in files for post-processing.  

6.1 Simulation Results and Analysis 
The simulation scenario is a square region with sides length 70 meters. Three geometric layout 
of ANs are selected for performance comparison. (1) ‘Net-I’: There are 30=M  ANs 
randomly and uniformly deployed inside the square region. (2) ‘Net-II’: There are 30=M  
ANs randomly and uniformly distributed on edges of the square region. (3) ‘Net-III’: There 
are half of 30=M  ANs randomly and uniformly distributed on edges of the square region, 
and the remains are randomly and uniformly deployed inside the square region. There are 

50=J  TN positions randomly and uniformly selected inside the convex hull formed by ANs 
for Net-I, Net-II, Net-III respectively.   

As discussed in Section 4, the nonzero Gaussian distribution ( )2,σµiN  is adopted to model 
the statistic characteristics of RSS in mixed LOS/NLOS environments, where iµ  follows the 
uniform distribution [ ]max,0 BU , 25max =B dB, Mi ,,2,1 = . The path loss exponent 5.3=β  in 
simulations. The number of ANs in NLOS is denoted as nN , and accordingly lN  represents 
the number of ANs in LOS. Thus the number of ANs in total is 30=+= ln NNM .  

1) Effect of  the standard deviation and the number of  NLOS : The simulation is performed 
with layout ‘Net-I’.  When simulating the effect of the standard deviation, nN  is fixed on 15. 
When simulating the effect of the number of NLOS, σ  is fixed on 7.  

It can be observed from Fig. 5 that the aRMSE of any estimator shows degradation as the 
standard deviation increases. CORR-ML exhibits much better performance than LLS and 
TS-LQP. SDP-ML performs almost the same as CORR-ML. In addition, the aRMSE of 
SDP-ML and CORR-ML are both far larger than CRLB even when σ  is small, which 
demonstrates that NLOS has significant influence on the localization accuracy(note that 

15=nN ).    
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Fig. 5.  aRMSE versus σ when 15=nN , 30=M . 

 
Fig. 6 displays the aRMSE versus the number of NLOS. In Fig. 6(a), the path loss exponent 

β  of TS-LQP and SDP-ML is fixed on 3.5, it can be seen that TS-LQP and SDP-ML cannot 
work properly as nN  gets larger. This phenomenon stems from the feature of TS-LQP and 
SDP-ML that they are highly dependent on the value of β , however the true value of β  
becomes larger than 3.5 as nN  increases. It means that in environments with dynamic NLOS, 
TS-LQP and SDP-ML maybe failure if the path loss exponent is not correctly decided. On the 
contrary, CORR-ML requires no prior knowledge of the path loss exponent, which is 
evidenced by the steady performance of CORR-ML in Fig. 6(a) and Fig. 6(b). Therefore the 
offline calibration or training effort is omitted in implementation, which makes CORR-ML 
more suitable for applications.   

 

 
            (a) β fixed on 3.5 as nN  varying                        (b) β changes from 3.5 t0 4.5 as nN  varying 

Fig. 6.  aRMSE versus nN when 7=σ , 30=M  
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Fig. 6(b) shows that, on the condition that the path loss exponent β  is tuned to the right 
value accordingly, SDP-ML have almost the same performance as CORR-ML. Note that 
CRLB decreases as the path loss exponent β  gets larger, for the inverse proportional 
relationship with β [10].  

Surprisingly, from Fig. 6(b), we can observe that SDP-ML, CORR, CORR-ML exhibit 
steady performance as nN  gets larger than 15, and TS-LQP shows even better performance. 
The reasonable interpretation may be as follows. The diversity of NLOS bias reach peak when 

15=nN , 15=lN . As nN  gets larger than 15,  the diversity of bias decreases. For example, the 
diversity of bias when 30=nN , 0=lN  is almost the same as that when 0=nN , 30=lN . 
Therefore the worst performance maybe not exhibit at 30=nN , 0=lN . Moreover, as 
announced in [5], TS-LQP would be most efficient when all the bias values are similar. 
Therefore, the performance of TS-LQP exhibits better as nN  gets larger than 15 due to the 
more similar bias values. 

 
2) Effect of  NLOS mitigation: This simulation is performed with layout ‘Net-I’. The number 

of NLOS nN  vary form 1 to 30, and the standard deviation 7=σ . Fig. 7 shows that the 
performance of CORR-ML with NLOS mitigation is much better than that without NLOS 
mitigation. The phenomenon of performance improvement happens when 30=nN , which is 
similar to the phenonmenon in Fig. 6(b). The reasonable interpretation is the same as that in 
Fig. 6(b), due to the decrease in the diversity of NLOS biases.  

 

 
Fig. 7. The performance comparison of CORR-ML with and without NLOS mitigation 

 
3) Effect of  the numbers of hearable ANs: In this simulation, the number of hearable ANs 

M  vary from 10 to 40 , and they are randomly and uniformly deployed inside the square 
localization region. The standard deviation 7=σ . It can be observed from Fig. 8 that the 
performance of any algorithm improves as M increases, demonstrating that more hearable 
ANs result in higher localization accuracy. In addition, SDP-ML performs a bit better than 
CORR-ML as M  increases. However, as analyzed in Section 5.2, the complexity of SDP-ML 
is the order of 4M , thus the cost of SDP-ML increases more quicker than CORR-ML as M  
increases.   
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Fig. 8.  aRMSE versus M when 10=nN , 7=σ  
 

4) Effect of the geometric layout: There is no doubt that the geometric layout of ANs has 
significant effect on the potential performance of any localization algorithm. Recently many 
articles focused on the topic of optimal geometric layout for localization [13, 29-31]. It can be 
concluded from the mentioned articles that the optimal geometric layout is not unique, and the 
uniformly and randomly deployment is the near-optimal geometric layout.    

The performance comparison of the three above-mentioned layouts (‘Net-I’, ‘Net-II’ and 
‘Net-III’) are displayed in Fig. 9, where 15=nN , 4=σ . It is worth noting that, (1) in the three 
layouts, all TN positions are located inside the convex hull formed by the ANS; (2) there are 
ANs placed on the edges of the localization region except the layout “Net-I”. It can be 
observed from Fig. 9 that “Net-I” exhibits even better performance than the other two layouts, 
which indicates that to place ANs on the edges of the localization region is not necessary for 
performance improvement, as long as the interesting localization positions are inside the 
convex hull formed by the ANs. This conclusion is useful for network implementation in 
applications.    

 

 
 

Fig. 9. The localization performance comparison of different geometric layout 
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6.2 Experimental Results and Analysis 
Experiments are taken in the Lab (LOS environments) and the central bus station (mixed 
LOS/NLOS environments) respectively.   

1) Experiment in the Lab 
The localization region in the Lab is a square region with sides length 6 m, and all wireless 

links between any two nodes are in line of sight, as depicted in Fig. 10(a). The ANs and the TN 
are Zigbee nodes, which equipped with IEEE 802.15.4 Compliant RF chip TI CC2530 and 
omni antenna, as showed in Fig. 10(b). In this scenario, the ANs are deployed randomly and 
uniformly,  and the TN positions are uniformly and randomly selected, as displayed in 
Fig.11(a). The red ‘o’ represents ANs positions, the blue ‘+’ represents TN positions, the red 
dot line represents the convex hull formed by ANs. There are 4 TN positions in the convex hull, 
and other 8 TN positions are out of the convex hull. The CRLB corresponding to this scenario 
in Lab is showed in Fig. 11(b).  

 

 
              (a)                                                                              (b) 

Fig. 10. (a)  The localization region in Lab. (b) The Zigbee nodes used in experiments. 
 

   
 (a)                                                                         (b) 

Fig. 11. (a)The ANs deployment and the TN positions. (b) The corresponding CRLB in Lab 
 

Obviously, from Fig. 11(b) we see that the localization error becomes larger when closer to 
the boundary, which is evidenced by the results showed in Fig. 12, where the localization error 
of any estimator in the convex hull is much less than that out of the convex hull. Moreover, it 
can be further demonstrated from Fig. 12 that although good localization performance is 
achieved under uniformly and randomly deployment, the localization accuracy can be further 
improved if all the interesting localization positions are  ensured to be located inside the 
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convex hull formed by the uniformly and randomly deployed ANs. This is an important 
guideline for ANs deployment in practice.  

 

 
Fig. 12. The localization performance comparison of in/out of the convex hull 

 
2) Experiment in the central bus station. 
The localization region is located inside the central bus station, with 100 meters long and 45 

meters wide. we deployed 30 Zigbee nodes (ANs) in the localization region uniformly, all are 
mounted on the concrete poles at the same level of height, and about 4.5 meters higher than the 
floor, as showed in Fig. 13.  The TN is placed in the front of the bus and under the front 
windscreen.  

 
(a)                                                                                     (b) 

Fig. 13. (a) Part of the scenario in the central bus station. (b) The close shot of ANs. 
  

 
Fig. 14. The localization performance comparison of different devices 
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In order to analyze the localization performance for different devices, there are 5 target 
nodes placed in the bus at the same time at each position, and denoted as Dev1, Dev2, Dev3, 
Dev4, Dev5 respectively. There are totally 26 TN positions uniformly and randomly selected 
inside the localization region. Fig. 14 depicts the performance comparison of these five 
devices. It can be observed that the average localization accuracy differs much from each other. 
For example, the aRMSE of Dev1 is about 1.5 meters less than that of Dev3 for CORR-ML, 
which is about 30% lower. Generally, It is hard to exclude the influence of the unpredictable 
hardware diversities between different devices. 

In addition, NLOS biases have significant influence on the localization accuracy 
degradation. For example, in Lab experiments, the aRMSE of CORR-ML can reach 0.6m, as 
shown in Fig. 12. However, in the central bus station, the aRMSE of CORR-ML increase to 
over 4m , which due to the severe NLOS biases caused by the nearby buses.  

In order to further investigate the flexibilities of the compared algorithms, the performance 
evaluations with randomly selected devices are performed. As mentioned before, all RSS 
measurements in experiments are relayed to the fusion center and saved in files for 
post-processing. Thus we can select RSS measurements of any device randomly at each  
position. The box plot of the performance evaluations with randomly selected devices are 
showed in Fig. 15. On each box, the central mark is the median, the edges of the box are the 
25th and 75th percentiles, and the whiskers extend to the most extreme data points. It can be 
observed from Fig. 15 that the median RMSE of SDP-ML is lower than CORR-ML, but the 
extreme RMSE of SDP-ML is about 3 meters larger than CORR-ML. In other words, 
CORR-ML can provide more steady localization estimations than SDP-ML, and exhibit more 
flexibilities for different devices. 

 

 
Fig. 15. The localization performance of randomly selected devices in experiments. 

7. Conclusions 

The recursively grid-based correlation localization method (CORR) based on the 
relationship between RSS and distance has been proposed in this paper, which does not need 
any prior knowledge of the propagation model parameters compared to other propagation 
model-based algorithms. By appending ML estimator to CORR, which called CORR-ML, can 
reach higher localization accuracy. Performance evaluations are performed in the simulations 
and the experiments in the Lab and the central bus station. The results indicate that CORR-ML 
performs much better than LLS, TS-LQP, and exhibits better performance than SDP-ML in 
experiments. Moreover, CORR-ML provides more steady localization estimations for 
different devices than other algorithms. Mostly, CORR-ML does not need any offline 
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calibration effort to calibrate the path loss exponent, which makes it more suitable, simple and 
convenient for applications. 
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