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Abstract

In this paper, a new technique for attitude and heading reference system (AHRS) using low-cost MEMS sensors of the 

gyroscope, accelerometer, and magnetometer is addressed particularly in vibration environments. The motion of MEMS 

sensors interact with the scale factor and cross-coupling errors to produce random errors by the harsh environment. A new 

adaptive attitude estimation algorithm based on the Kalman filter is developed to overcome these undesirable side effects 

by analyzing windowed measurement error covariance. The key idea is that performance degradation of accelerometers, for 

example, due to linear vibrations can be reduced by the proposed measurement error covariance analysis. The computed error 

covariance is utilized to the measurement covariance of Kalman filters adaptively. Finally, the proposed approach is verified 

by using numerical simulations and experiments in an acceleration phase and/or vibrating environments.
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1. Introduction

Recently, the unmanned aerial vehicle (UAV) has been one 

of the key platforms for the various field of applications, for 

example, surveillance, reconnaissance, aerial photography 

and so on. The small sized UAVs, for example, the multi-

copters are positioned on the dominant areas of research 

and development. Due to outstanding features of the MEMS 

technology, the small-sized inertial measurement unit 

(IMU) is able to be manufactured by MEMS accelerometers, 

gyroscopes, and magnetometers. The MEMS sensors have a 

wide range of applications due to its low cost, small size, and 

low power consumption. One of the drawbacks of the MEMS 

sensors is that they introduce relatively large measurement 

errors induced by the scale factor error, drift error and so 

on. Therefore, MEMS sensors are mixed with the external 

devices such as global positional system (GPS) to improve the 

accuracy of navigation and attitude information [1-3]. 

Primary knowledges required to control UAVs are the precise 

orientation and attitude information provided by IMUs. As 

mentioned above, a number of small UAVs make use of MEMS 

sensors since most of small-sized IMUs are comprised of low-

cost MEMS sensors. It is very natural that key technologies 

for MEMS based IMUs are abilities to generate high quality 

attitude information by filtering methods as accurately as 

possible. Note that the attitude in a local position is in general 

estimated by using the direction of a gravity vector measured 

by accelerometers. It is quite difficult to estimate the direction 

of gravity vector when IMUs are under acceleration phase, 

since the gravity and the acceleration cannot be measured 
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separately due to the inherent property of the acceleration. 

It makes active research possible to improve performances 

of MEMS IMUs as well.

One of the well-known approaches is to utilize the 

extended Kalman filtering (EKF) technique. The angular 

rate generated by the output of gyroscopes is used for the 

propagation, and the output of accelerometers is used for the 

measurement update of the EKF algorithm. If the norm of 

measured acceleration is different from the norm of the local 

gravity vector with a certain level, then the EKF assumes 

that the IMU is under the acceleration phase. In that case, 

the gravity vector could not be estimated accurately so 

that the EKF performs only the propagation process using 

the angular rates[4-9]. Much powerful technique so called 

adaptive Kalman Filtering (AKF) is introduced [10-11]. 

This algorithm handles measurement error covariance 

as an adaptive variable. In other words, AKF updates the 

measurement covariance continuously by inspecting the 

norm of the acceleration. That is, it analyzes the difference 

of norms between the gravity vector and accelerometer 

measurement. Note that in this approach, determination of 

the level of the norm difference is also important since it is 

deeply related to attitude performances.

A meaningful success has been accomplished in the 

development of attitude and heading reference systems 

(AHRS) using MEMS sensors. Nevertheless, most of the 

algorithms would fall into performance degradation in  

vibration environments. In a vibration environment, some 

vibration induced errors will average to zero. The high-

frequency term of the vibration could be in general treated as 

the white noise since it can be averaged out. Furthermore, the 

low-frequency term of the vibration behaves like a drift, i.e, 

bias or random walk. The well-known vibration rectification 

error(VRE) which is induced by the asymmetric and/or 

nonlinearity of sensors can be regarded as the vibration 

induced bias[16-17]. It is quite difficult to fully respond the 

vibration ranging from low-frequency to high-frequency 

in the generic Kalman filter formulation. Therefore, it is 

assumed in this work that the level of the asymmetric 

and/or nonlinearity of sensors are low so that the VRE is 

negligible. In this paper, a new approach for AHRS using 

low-cost sensors in vibration environments is proposed. 

Obviously, it is very important to identify the vibration 

environment. The key idea is that by inspecting the set of 

windowed measurements, it is possibly able to estimate that 

the system is now under vibration environments. That is, it 

is much desirable to make use of a large data set to identify 

the vibrational environment compared with a small data set. 

The windowed measurement error covariance (WMEC) of a 

norm between windowed measurements of accelerometers 

and gravity vector by statistical approaches is directly 

employed to the measurement covariance of the extended 

Kalman filter adaptively. 

This paper is organized as follows. A brief review on the 

EKF for AHRS is placed on the first section. The attitude 

kinematics, error dynamics for attitude estimation and 

measurement update for EKF are illustrated in this section. 

Next, the proposed algorithm of WMEC in this paper is 

explained and employed to the Kalman filter technique. 

Then, the suggested technique is verified by numerical 

simulations and experiments as well. Finally the last section 

illustrates conclusions of this paper.

2. Attitude and Heading Reference System

In this section, the attitude and heading reference system 

based on the EKF is briefly introduced for the augmentation 

to the proposed WMEC algorithm.

2.1 Attitude Kinematics

In this part the basic properties of attitude kinematics are 

briefly summarized. There are a variety of ways to express 

the attitude, for example, direction cosine matrix (DCM), 

quaternion, Euler angles, Euler axis and rotation angles, 

Rodrigues, and so on. Since DCM has relatively many entities 

to identify in the matrix, and the Euler angle representation 

has a singularity problem, Therefore, the quaternion for 

attitude representations can be the primary choice in this 

paper since the quaternion has useful advantages of a small 

nonlinearity and no singularity. 

Firstly, let us briefly review the attitude representation. 

The quaternion is defined as
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Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 
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Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
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quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

, (4)



557

Jong-Myeong Kim    Vibration-Robust Attitude and Heading Reference System Using Windowed Measurement Error Covariance

http://ijass.org

where 

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

,
(5)

and I3×3 is an identity matrix, and the bracket [p×] represents 

the skew-symmetric matrix defined as

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

.

(6)

Note that the advantage of quaternions is that successive 

rotations can be accomplished just by using simple 

quaternion multiplications

The quaternion kinematic model is given by [12]-[15]

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

,
(7)

where 

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

 is the angular rate vector, and the 

transformation matrices Ω is defined as

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

.
(8)

Since the overall representation of the quaternion 

kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics. 

2.2 State Propagation

A three-axis gyroscope, accelerometer, and magnetometer 

are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be 

estimated for AHRS. A nonlinear model needs to be linearized 

to apply for the extended Kalman filtering technique. Since 

quaternions are quasi-linear, it is required to be represented 

an error state model. Let us first formulate attitude error 

representation. The quaternion error, δq, is given by

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

, (9)

where 

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

 denotes quaternion multiplication, q represents a 

true quaternion ,and 

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

 is an estimated quaternion. Next, let 

us differentiate the error quaternion with respect to time and 

insert the quaternion kinematics in Eq.(7). Then the vector 

part of the error quaternion leads to [12]

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

,
(10)

where 

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a)

 denotes the estimation angular velocity vector. This 

linearized attitude error model in Eq.(10) will be used for 

the propagation of the EKF technique. Note that the error of 

quaternion fourth component remains constant. 

The gyroscope measurement model is in general given by

 

 

( ) ( ) ( )TC   q q q   (4) 

where  

4 3 3 [ ]
( ) T

q I    
    

p
q

p
, 4 3 3 [ ]

( ) T

q I    
    

p
q

p
 (5) 

and 3 3I   is an identity matrix, and the bracket [ ]p  represents the skew-symmetric matrix defined as 

3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

 
    
  

p  (6) 

Note that the advantage of quaternions is that successive rotations can be accomplished just by using simple 

quaternion multiplications 

The quaternion kinematic model is given by [12]-[15] 

1 1( ) ( )
2 2

   q ω q q ω  (7) 

where 
T

x y z     ω  is the angular rate vector, and the transformation matrices   is defined as 

[ ]
( )

0T

  
    

ω ω
ω

ω
 (8) 

Since the overall representation of the quaternion kinematics are bilinear, it is much computationally efficient 

rather than other attitude kinematics.  

 

2.2 State Propagation 
A three-axis gyroscope, accelerometer, and magnetometer are used to realize an ARHS system in this paper. The 

quaternion for attitude and gyro bias are considered to be estimated for AHRS. A nonlinear model needs to be 

linearized to apply for the extended Kalman filtering technique. Since quaternions are quasi-linear, it is required 

to be represented an error state model. Let us first formulate attitude error representation. The quaternion error,

q , is given by 
1ˆ  q q q  (9) 

where   denotes quaternion multiplication, q  represents a true quaternion ,and q̂  is an estimated 

quaternion. Next, let us differentiate the error quaternion with respect to time and insert the quaternion 

kinematics in Eq.(7). Then the vector part of the error quaternion leads to [12] 

1ˆ[ ]
2

     p ω p ω  (10) 

where ω̂  denotes the estimation angular velocity vector. This linearized attitude error model in Eq.(10) will be 

used for the propagation of the EKF technique. Note that the error of quaternion fourth component remains 

constant.  

The gyroscope measurement model is in general given by 

g  ω ω β w  (11a), (11a)

 

 

 gbβ w   (11b)
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the gyro bias derived from the first order Markov process, and gw , gbw  are zero-mean white Gaussian noises 
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where α  is the Euler angle vector comprised of roll, pitch, yaw error angles for any rotation sequence. By 

using this simplified equation, Eq.(15) can be rewritten as  
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In this work the attitude error of Euler angles and gyro bias are selected as state variables to be estimated for the 

attitude and heading reference system. By assuming that the angular rate is constant in a given time interval t ,  

the exact solution of the state transition matrix of Eq.(19c) is obtained by using the inverse Laplace 
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where the angular vector and the magnitude of the vector are defined as t θ ω  and   θ , respectively, and 
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The detailed derivation of the state transition matrix in Eq.(20)-(22) is placed in Appendix of this paper.  
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where bm  denotes the output vector of 3 axis magnetometers and ba  represents the measurement vector for 

3 axis accelerometers, and aη  and mη  are zero-mean white Gaussian noise vectors of the accelerometer and 
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Note that it is easy to calculate the measurement sensitivity matrices directly from Eq.(23).  

The key feature of AHRS is to estimate the attitude and headings under the acceleration phase. The well-

known approaches is to utilize the norm error level between the local gravity vector and the output of 
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where the angular vector and the magnitude of the vector 

are defined as θ=ωΔt and θ=||θ||, respectively, and the sub-

matrices of the state transition matrix are given by 
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In this work the attitude error of Euler angles and gyro bias are selected as state variables to be estimated for the 

attitude and heading reference system. By assuming that the angular rate is constant in a given time interval t ,  

the exact solution of the state transition matrix of Eq.(19c) is obtained by using the inverse Laplace 

transformation :  
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where the angular vector and the magnitude of the vector are defined as t θ ω  and   θ , respectively, and 

the sub-matrices of the state transition matrix are given by  
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The detailed derivation of the state transition matrix in Eq.(20)-(22) is placed in Appendix of this paper.  

 

2.3 Measurement Update 
Most of AHRS based on EKF utilize acceleration vectors and magnetic field vectors for the measurement 
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where bm  denotes the output vector of 3 axis magnetometers and ba  represents the measurement vector for 

3 axis accelerometers, and aη  and mη  are zero-mean white Gaussian noise vectors of the accelerometer and 

magnetometer with their covariance of 3 3aI   and 3 3m I  , respectively. The measurement covariance ( ) 

matrix for the measurement is defined as 

 
(24) 

Note that it is easy to calculate the measurement sensitivity matrices directly from Eq.(23).  

The key feature of AHRS is to estimate the attitude and headings under the acceleration phase. The well-
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Eq.(20)-(22) is placed in Appendix of this paper. 
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Note that it is easy to calculate the measurement sensitivity matrices directly from Eq.(23).  
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where mb denotes the output vector of 3 axis magnetometers 

and ab represents the measurement vector for 3 axis 

accelerometers, and ηa and ηm are zero-mean white Gaussian 

noise vectors of the accelerometer and magnetometer 

with their covariance of σgI3×3 and σmI3×3, respectively. The 

measurement covariance (R0) matrix for the measurement 

is defined as
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Note that it is easy to calculate the measurement sensitivity 

matrices directly from Eq.(23). 

The key feature of AHRS is to estimate the attitude and 

headings under the acceleration phase. The well-known 

approaches is to utilize the norm error level between the 

local gravity vector and the output of accelerometer. The AKF 

algorithm modifies the measurement covariance adaptively. 

That is, AKF updates the measurement covariance 

continuously by inspecting the norm error. If the magnitude 

of the norm error is bigger than a permissible level, the 

technique decrease the measurement covariance and vice 

versa. In this approach, determination of the level of the 

norm difference is also important since it is deeply relevant 

to the attitude performance. Nevertheless, the AKF algorithm 

would fall into performance degradation in a vibrational 

environment. Since the dynamic motion of MEMS IMU will 

interact with the scale factor and cross-coupling errors to 

produce additional random errors in the harsh environment. 

It means that a reliable technique is essential to properly 

make up for the performance degradation of the sensors due 

to the vibration which is a different type of acceleration.

3. Windowed Measurement Error Covariance

In this section, a new approach for AHRS in a vibration 

environment is addressed. As discussed in the previous 

section, it is very important to identify the vibration 

environment for attitude estimation using the MEMS based 

inertial sensors. The key idea is that by inspecting the set of 

windowed measurements it is able to recognize that the body 

installed with IMU is now under vibration environments. 

It is natural that using a large set of measurements is an 

appropriate idea rather than using a single measurement. 

The proposed algorithm in this work is to modify the 

measurement covariance of the AKF for AHRS adaptively. 

The way of computing the measurement covariance is 

as follows. The proposed windowed measurement error 

covariance (WMEC) of the norm error between the moving 

windowed measurement set and gravity vector is calculated 

by the statistical approach. Then, the computed WMEC are 

added onto the nominal measurement covariance R_0 with 

weighting parameters. 

The proposed WMEC technique employs a number of N   

previous measurements as well as the present measurement 

to evaluate the adaptive measurement covariance for EKF 

algorithm. That is, the WMEC approach demands all the 

measurements obtained between tk-N and tk illustrated in 

Fig 1. Firstly, the way of computing the norm error of the 

measurement vector and the gravity vector at time tj is given 

by
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where ( )b jta  presents the accelerometer output vector at time jt  and na  denotes the acceleration vector of 

gravity at a local navigation frame. The first term in the right-hand side of the equation is the magnitude of 

measured accelerometer at time jt  and the last term is the norm value of a local gravity vector. The norm error 

in Eq.(25) represents how much the magnitude of the measured accelerometer vector at a given time is different 

from that of the gravity vector. If the body frame is in the acceleration phase and/or vibration environment, the 

norm error at a certain time would be increased compared with nominal cases. Recall that it is a challenging 

problem to distinguish the vibrational parameter from the acceleration phase with the single norm error. 
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where ab(tj) presents the accelerometer output vector at time 

tj and an denotes the acceleration vector of gravity at a local 

navigation frame. The first term in the right-hand side of the 

equation is the magnitude of measured accelerometer at 
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time tj and the last term is the norm value of a local gravity 

vector. The norm error in Eq.(25) represents how much 

the magnitude of the measured accelerometer vector at a 

given time is different from that of the gravity vector. If the 

body frame is in the acceleration phase and/or vibration 

environment, the norm error at a certain time would be 

increased compared with nominal cases. Recall that it is a 

challenging problem to distinguish the vibrational parameter 

from the acceleration phase with the single norm error.

By modifying the measurement covariance in Eq.(24), the 

suggested WMEC technique is described as
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where   and j  are the design parameters. Especially, by simply setting 1 / ( 1)j N   , the summation 

term in Eq.(26) leads to the variance of the norm error. It is obvious that there are a variety of way to determine 

j  so that the features of the Kalman filtering also depends on the parameters under the acceleration phase. 

Also, the design parameter   plays very important role as the balancing factor between the nominal covariance 

and the covariance of accelerometer norm error. Let us suppose that the balancing factor is selected as a small 

value. It is intended that the contribution of the WMEC technique would be small. In case of 0N   the 

WMEC will be the identical approach to the previous AKF algorithm since it makes use of only the present 

measurement. 

A useful technique is addressed to figure out how to distinguish the vibration and acceleration phase. It is 

possible to evaluate the mean and covariance of i  with N measurements. It could be assumed that the current 

status is acceleration phase if the mean value of the windowed measurement is larger than a certain mean level. 

Likewise, it is also regarded as vibrational phase if the covariance for the N measurements in Eq.(26) is larger 

than a certain covariance reference. Therefore, the parameter   needs to be adjusted adaptively to avoid the 

fillter divege, especially, when the sensors are under the accelerational phase. In this case, relatively large value 

of   is recommeded rather than the case of the vibrational environment. 

Next, additional measurements can be also handled by the WMEC technique. For example, let us consider the 

distortion of magnetometers due to the magnetic field interference. The magnitude of the magnetic vector will 

be varied around the magnetic interference source. To overcome this problem, Eq.(26) can be rewritten as 
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where  and j  are the design parameters for magnetometers. The norm error between the magnitude of 

magnetometer vector and that of a local magnetic field vector is also given by 

 (28) 

where is ( )b jtm  presents the magnetometer output vector at time jt  and nm  denotes the magnetic field 

vector at a local navigation frame. 

 

4. Numerical Simulations 
In this section, several numerical simulations are performed to evaluate the performance of the proposed 

WMEC technique in the presence of acceleration and/or vibrational disturbances. The MEMS based sensors 

used in this simulation are chosen as 3-aixs gyroscopes, accelerometers and magnetometers. The typical 

specification of the MEMS sensors is listed in Table. 1. It is assumed that there is no bias terms of accelerometer 

and magnetometer except gyroscopes since they are unobservable with these sensor combinations. The update 

frequency of the sensors is selected as 10Hz for the measurement update of the Kalman filtering technique. 

Table 1. Typical specification of the MEMS sensors. 

 Std. deviation( ) Bias random walk 

Gyroscope 0.06 deg/s 5 deg/h 

Accelerometer 4 mg - 

Magnetometer 3 mGauss - 

 

As discussed, the dynamic motion of MEMS IMU is going to interact with the scale factor and cross-coupling 

errors in vibration environments. Furthermore, some nonlinear effects are also going to introduce additional 

errors known as VRE, and it behaves like a bias. In this work, the vibrational noise is the random Gaussian by 

assuming that the nonlinearity of the sensors is small in this study. To evaluate the performance of the proposed 

algorithm, a flight scenario is displayed in Table 2. Note that there are sinusoidally maneuvering acceleration 

phase for about 70 seconds and random vibration phase for about 100 seconds, respectively.  

Table 2. Simulation Scenario 

Times(sec) External disturbance Comments 

100~170  1 2 32sin( ) 3cos( ) 2cos( ) Tt t t   Variation acceleration 

300~400 21 /m s  (1 ) Random vibration 

 

where i  is the acceleration frequencies. For these simulation, 1  is selected as 0.2rad/s and 2 , 3  are 

( ) ( )T T
j b j b j n nt t  m m m m
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where κ and μj are the design parameters for magnetometers. 

The norm error between the magnitude of magnetometer 

vector and that of a local magnetic field vector is also given 

by
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where is mb(tj) presents the magnetometer output vector at 

time tj and mn denotes the magnetic field vector at a local 

navigation frame.

4. Numerical Simulations

In this section, several numerical simulations are 

performed to evaluate the performance of the proposed 

WMEC technique in the presence of acceleration and/

or vibrational disturbances. The MEMS based sensors 

used in this simulation are chosen as 3-aixs gyroscopes, 

accelerometers and magnetometers. The typical specification 

of the MEMS sensors is listed in Table. 1. It is assumed that 

there is no bias terms of accelerometer and magnetometer 

except gyroscopes since they are unobservable with these 

sensor combinations. The update frequency of the sensors is 

selected as 10Hz for the measurement update of the Kalman 

filtering technique.

As discussed, the dynamic motion of MEMS IMU is going 

to interact with the scale factor and cross-coupling errors 

in vibration environments. Furthermore, some nonlinear 

effects are also going to introduce additional errors known as 
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By modifying the measurement covariance in Eq.(24), the suggested WMEC technique is described as 
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where   and j  are the design parameters. Especially, by simply setting 1 / ( 1)j N   , the summation 

term in Eq.(26) leads to the variance of the norm error. It is obvious that there are a variety of way to determine 

j  so that the features of the Kalman filtering also depends on the parameters under the acceleration phase. 

Also, the design parameter   plays very important role as the balancing factor between the nominal covariance 

and the covariance of accelerometer norm error. Let us suppose that the balancing factor is selected as a small 

value. It is intended that the contribution of the WMEC technique would be small. In case of 0N   the 

WMEC will be the identical approach to the previous AKF algorithm since it makes use of only the present 

measurement. 

A useful technique is addressed to figure out how to distinguish the vibration and acceleration phase. It is 

possible to evaluate the mean and covariance of i  with N measurements. It could be assumed that the current 

status is acceleration phase if the mean value of the windowed measurement is larger than a certain mean level. 

Likewise, it is also regarded as vibrational phase if the covariance for the N measurements in Eq.(26) is larger 

than a certain covariance reference. Therefore, the parameter   needs to be adjusted adaptively to avoid the 

fillter divege, especially, when the sensors are under the accelerational phase. In this case, relatively large value 

of   is recommeded rather than the case of the vibrational environment. 

Next, additional measurements can be also handled by the WMEC technique. For example, let us consider the 

distortion of magnetometers due to the magnetic field interference. The magnitude of the magnetic vector will 

be varied around the magnetic interference source. To overcome this problem, Eq.(26) can be rewritten as 

Fig. 1. Sequential Measurement of Accelerometer

Table 1. Typical specification of the MEMS sensors.
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where  and j  are the design parameters for magnetometers. The norm error between the magnitude of 

magnetometer vector and that of a local magnetic field vector is also given by 

 (28) 

where is ( )b jtm  presents the magnetometer output vector at time jt  and nm  denotes the magnetic field 

vector at a local navigation frame. 

 

4. Numerical Simulations 
In this section, several numerical simulations are performed to evaluate the performance of the proposed 

WMEC technique in the presence of acceleration and/or vibrational disturbances. The MEMS based sensors 

used in this simulation are chosen as 3-aixs gyroscopes, accelerometers and magnetometers. The typical 

specification of the MEMS sensors is listed in Table. 1. It is assumed that there is no bias terms of accelerometer 

and magnetometer except gyroscopes since they are unobservable with these sensor combinations. The update 

frequency of the sensors is selected as 10Hz for the measurement update of the Kalman filtering technique. 

Table 1. Typical specification of the MEMS sensors. 

 Std. deviation( ) Bias random walk 

Gyroscope 0.06 deg/s 5 deg/h 

Accelerometer 4 mg - 

Magnetometer 3 mGauss - 

 

As discussed, the dynamic motion of MEMS IMU is going to interact with the scale factor and cross-coupling 

errors in vibration environments. Furthermore, some nonlinear effects are also going to introduce additional 

errors known as VRE, and it behaves like a bias. In this work, the vibrational noise is the random Gaussian by 

assuming that the nonlinearity of the sensors is small in this study. To evaluate the performance of the proposed 

algorithm, a flight scenario is displayed in Table 2. Note that there are sinusoidally maneuvering acceleration 

phase for about 70 seconds and random vibration phase for about 100 seconds, respectively.  

Table 2. Simulation Scenario 

Times(sec) External disturbance Comments 

100~170  1 2 32sin( ) 3cos( ) 2cos( ) Tt t t   Variation acceleration 

300~400 21 /m s  (1 ) Random vibration 

 

where i  is the acceleration frequencies. For these simulation, 1  is selected as 0.2rad/s and 2 , 3  are 

( ) ( )T T
j b j b j n nt t  m m m m

1
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VRE, and it behaves like a bias. In this work, the vibrational 

noise is the random Gaussian by assuming that the 

nonlinearity of the sensors is small in this study. To evaluate 

the performance of the proposed algorithm, a flight scenario 

is displayed in Table 2. Note that there are sinusoidally 

maneuvering acceleration phase for about 70 seconds and 

random vibration phase for about 100 seconds, respectively. 

Where ωi is the acceleration frequencies. For these 

simulation, ω1 is selected as 0.2rad/s and ω2, ω3 are 0.1rad/s, 

respectively. In this study, the suggested technique is 

compared with the EKF algorithm for the conventional 

AHRS technique known as a very robust approach under the 

acceleration phase. Using the given scenario, a simulation 

is performed, and the plots of the 3-axis attitude and gyro 

bias errors of the EKF approach are displayed in Fig. 2 

and 3. In case of the nominal condition, the errors of the 

attitude and gyro bias are converged within the theoretical 

3σ bounds satisfactorily. The red line indicates the state error 

covariance. On the other hand, the errors are increased 

in the sinusoidal acceleration periods. Of cause it is very 

natural since the algorithm do not utilize the measurement 

update of the Kalman filtering on the acceleration phase. 

Therefore, one can see that the state error covariance is also 

increased. Much interesting results are on the interval of 

vibrational environments. Due to the random vibration, the 

EKF sometime proceeds the measurement update since the 

norm error is within the permissible level. Therefore, the state 

error covariance is smaller than the case of the acceleration 

phase. However, the erroneous measurement causes the 

state error increase. The reason is that there is a mismatch 

between the actual measurement and the measurement 

covariance of the EKF.

Next, the WMEC technique for AHRS suggested in 

this paper results in Fig. 4 and 5. For these simulations, 

γ is selected as 1, λ is 0.09, and N is chosen as 5 for the 

windowing. If it is regarded as an acceleration phase, λ is 

chosen as 10 in this case study. Note that the measurement 

covariance of EKF is updated adaptively by using Eq.(26) in 

these studies. Most promising outcome by these simulations 

for actual implementations is that state errors are within 

the theoretical covariance bounds. Of cause the error 

covariance is slightly increased to fit measurement qualities 

in the presence of acceleration phase. The emphasis on this 

technique is that the estimated attitude and gyro bias are 

always of reliable information with respect to the computed 

Table 2. Simulation Scenario 
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where  and j  are the design parameters for magnetometers. The norm error between the magnitude of 

magnetometer vector and that of a local magnetic field vector is also given by 

 (28) 

where is ( )b jtm  presents the magnetometer output vector at time jt  and nm  denotes the magnetic field 

vector at a local navigation frame. 
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using Eq.(26) in these studies. Most promising outcome by these simulations for actual implementations is that 

state errors are within the theoretical covariance bounds. Of cause the error covariance is slightly increased to fit 

measurement qualities in the presence of acceleration phase. The emphasis on this technique is that the 

estimated attitude and gyro bias are always of reliable information with respect to the computed state error 

covariance, while the previous approaches are not. Consequently, it is obvious that the proposed algorithm can 

estimate the state variables reliably rather than the EKF technique, especially, in the presence of the vibration. 
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state error covariance, while the previous approaches are 

not. Consequently, it is obvious that the proposed algorithm 

can estimate the state variables reliably rather than the EKF 

technique, especially, in the presence of the vibration.

5. Experiments

In this section, an experiment is carried out to verify 

the effectiveness of the suggested technique. A test based 

on the conventional EKF approach is also conducted 

analogous to the simulation study. The sensor utilized in this 

experiment is a MPU9150 sensor manufactured by a three-

axis accelerometer, a three-axis gyroscope and a three-axis 

magnetometer. The given specifications of the AHRS are 

listed in Table 3. 

The experimental setup installed for this work is 

consisted of an AHRS sensor and a small motor on a 40cm 

board. The sensor is attached on this board. The AHRS 

sensor is comprised with three-axis gyroscope, three-axis 

accelerometers, and three-axis magnetometers. The motor 

is configured to operate at a constant rpm to generate 

vibration due to the off-centered mass. Note that to obtain 

the reference angle to obtain the errors, only static condition 

is considered for this ground experiment. 

The plots of the attitude and gyro bias errors by the 

EKF based experiment are displayed in Fig. 6 and 7. The 

random vibration for these experiments are also added 

for all the time of experiments. Note that the true value of 

gyro bias is regarded as a constant in these experiments 

since the total accomplished time of the test is relatively 

short. It is turned out that both of attitude and bias errors 

are similar with the results of numerical simulation 

cases. That is, the errors are increased in the vibration 

disturbance periods much exceeding the state error 

covariance, while the attitude and bias errors in nominal 

conditions are small and bounded within the given error 

covariance comparatively. The red line also indicates the 

state error covariance.

With the same data conducted for the EKF experimental 

test, attitude and gyro bias are determined by using the 

WMEC technique with the same values of the parameters 

for the above simulation study once again. The plots are 

illustrated in Fig. 8 and 9. Needless to say, all state errors 

are small and the algorithm is stable considerably. Careful 

examination of the plots provides that error covariance of 

the attitude is slightly bigger than the case of the EKF. It is 

also attributed to the added measurement error covariance 

in Eq.(26). It is much theoretical since the quality of sensor 

measurement is assumed to be of inferior under the 

external acceleration and vibration environment. Finally, 

Table 3. specification of MPU9150
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it is clear that the proposed technique allows small state 

errors, while the previous EKF technique fails to estimate 

the attitude and gyro bias under external disturbances, 

such as vibration. 

Finally, the error histories of Euler angles for the EKF and 

the proposed WMEC technique are illustrated in Fig. 10 

respectively. Note that the attitude norm error in this plot is 

defined as 

 

 

the EKF. It is also attributed to the added measurement error covariance in Eq.(26). It is much theoretical since 

the quality of sensor measurement is assumed to be of inferior under the external acceleration and vibration 

environment. Finally, it is clear that the proposed technique allows small state errors, while the previous EKF 

technique fails to estimate the attitude and gyro bias under external disturbances, such as vibration.  

 
Fig. 8 Experimental attitude error of proposed WMEC 

 
Fig. 9 Experimental gyro bias error of proposed WMEC 

 

Finally, the error histories of Euler angles for the EKF and the proposed WMEC technique are illustrated in Fig. 

10 respectively. Note that the attitude norm error in this plot is defined as  

 2 2 2                                          (29) 

The attitude error of the EKF can be sometimes smaller than that of the proposed algorithm. However, the 

.
(29)

The attitude error of the EKF can be sometimes smaller 

than that of the proposed algorithm. However, the WMEC 

technique in general produces a rather small amount of 

attitude errors stably.

 

6. Conclusions

A new approach for attitude and heading reference 

systems (AHRS) manufactured by low-cost MEMS sensors 

was proposed to overcome the performance degradation of 

attitude estimation under vibrational environments. Note 

that an absolute reference system is required to identify 

the accelerometer bias term. In this work, the proposed 

algorithm to estimate the attitude and angular rate only 

used only inertial measurement devices such as, gyroscope, 

accelerometers, and magnetometers so that it was assumed 

that the bias of accelerometer is negligible. The proposed 

windowed measurement error covariance (WMEC) 

technique employed a number of N previous measurements 

as well as the present measurement to compute measurement 

covariance for the extended Kalman filtering for AHRS. It was 

proven by numerically and experimentally that the WMEC 

method by adaptively updating measurement covariance 

could counteract effects of vibrational environments. 

Furthermore, one of leading advantages is that the suggested 

approach is easily implementable to the previous EKF 

algorithm for AHRS. 
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Appendix

In this Appendix, the state transition matrix of Eq.(22) is 

derived in detail 
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expressed as  

 
1 2

1

3 3 3 3
10

sI F
I

s



 

  
  
 
 

                                   (A3) 

where 

 

2 2

2 2
1 2

2 2

1 x x y z x z y

x y z y y z x

x z y y z x z

s s s
s s s

s s s s s

      
      
      

   
           

ω
                    (A4a) 

 

2 2

2 2
2 22 2

2 2

1 x x y z x z y

x y z y y z x

x z y y z x z

s s s
s s s

s s s s s

      
      
      

   
       
     
ω

                   (A4b) 

Furthermore, by closely inspecting above equations, it is clear that 1  and 2  are decomposed as  
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Next, The inverse Laplace transformation of Eq.(A3) is given by  
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and 
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By using the inverse Laplace transformation technique, 

the state transition matrix is readily obtained as
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WMEC technique in general produces a rather small amount of attitude errors stably. 

 
Fig. 10 Comparison of attitude norm error  

 

6. Conclusions 

A new approach for attitude and heading reference systems (AHRS) manufactured by low-cost MEMS 

sensors was proposed to overcome the performance degradation of attitude estimation under vibrational 

environments. Note that an absolute reference system is required to identify the accelerometer bias term. In this 

work, the proposed algorithm to estimate the attitude and angular rate only used only inertial measurement 

devices such as, gyroscope, accelerometers, and magnetometers so that it was assumed that the bias of 

accelerometer is negligible. The proposed windowed measurement error covariance (WMEC) technique 

employed a number of previous measurements as well as the present measurement to compute measurement 

covariance for the extended Kalman filtering for AHRS. It was proven by numerically and experimentally that 

the WMEC method by adaptively updating measurement covariance could counteract effects of vibrational 

environments. Furthermore, one of leading advantages is that the suggested approach is easily implementable to 

the previous EKF algorithm for AHRS.  
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In this Appendix, the state transition matrix of Eq.(22) is derived in detail  
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